
National Technical University of Athens

School of Electrical and Computer Engineering

Division of Information Transmission Systems and
Material Technology

Enabling Reasoning and Verification Support for
Intelligent Agent Systems, using Formal Methods

Doctorate Thesis

Aikaterini E. Ksystra

Athens, December 2017

National Technical University of Athens

School of Electrical and Computer Engineering

Division of Information Transmission Systems and
Material Technology

Enabling Reasoning and Verification Support for
Intelligent Agent Systems, using Formal Methods

Doctorate Thesis

Aikaterini E. Ksystra

Advisory Committee:

Panayiotis Frangos (Thesis Advisor)
Petros Stefaneas (Thesis Committee)
Konstantine Arkoudas (Thesis Committee)

Approved by the Examination Committee on

............................

P. Frangos P. Stefaneas K. Arkoudas
NTUA NTUA Bloomberg Research

............................

S. Papavassiliou G. Koletsos K. Dimitrakopoulos
NTUA NTUA University of Athens

............................

P. Kavassalis
University of Aegean

Athens, December 2017

...................................

Αικατερίνη, Ε. Ξύστρα

Υποψ. Διδάκτωρ της Σχολής Ηλεκτρολόγων Μηχανικών και Μηχανικών Υ-

πολογιστών, Ε.Μ.Π.

Διπλωματούχος της Σχολής Εφαρμοσμένων Μαθηματικών και Φυσικών Επι-

στημών, Ε.Μ.Π.

Copyright c© Αικατερίνη, Ε. Ξύστρα, 2017.

Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ

ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση,

αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνη-

τικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να

διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας

για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα. Οι α-

πόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν

τον συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες

θέσεις του Εθνικού Μετσόβιου Πολυτεχνείου.

Αφιερώνεται στην οικογένεια μου.

Περίληψη

Οι τυπικές μέθοδοι είναι τεχνικές, γλώσσες και εργαλεία με ισχυρό μαθηματι-

κό υπόβαθρο, οι οποίες μας δίνουν τη δυνατότητα μιας αυστηρής, μαθηματικά

ορισμένης, χωρίς ασάφειες, περιγραφής ή προδιαγραφής των συστημάτων, η ο-

ποία χρησιμοποιείται για το σχεδιασμό τους, την ανάλυση, και την επαλήθευση

επιθυμητών ιδιοτήτων τους.

΄Ενας πολύ σημαντικός κλάδος των τυπικών μεθόδων είναι οι γλώσσες αλγε-

βρικών προδιαγραφών, οι οποίες έχουν ως μαθηματικό υπόβαθρο κάποιο μαθη-

ματικό λογικό σύστημα ή και συνδυασμούς λογικών συστημάτων. Μια τέτοια

εκτελέσιμη αλγεβρική γλώσσα προδιαγραφών νέας γενιάς, η οποία είναι απόγο-

νος των ιστορικών γλωσσών OBJ, είναι η CafeOBJ. Το βασικότερο χαρακτη-

ριστικό της γλώσσας αυτής, που τη διακρίνει από αντίστοιχους φορμαλισμούς,

είναι η άμεση υποστήριξη που παρέχει για συμπεριφοριακές προδιαγραφές, με

την ενσωμάτωση στο συντακτικό της ειδικών τύπων και τελεστών. Η συμπερι-

φοριακή προδιαγραφή, η οποία έχει τις βάσεις της στην άλγεβρα με κρυμμένους

τύπους, ενισχύει την αλγεβρική προδιαγραφή με αντικείμενα ή αφηρημένες μη-

χανές καταστάσεων, δίνοντας έτσι τη δυνατότητα περιγραφής σύνθετων δυνα-

μικών συστημάτων. Παράλληλα, με τη χρήση τεχνικών επαλήθευσης που βα-

σίζονται στη συμπεριφοριακή προδιαγραφή, η CafeOBJ μας δίνει τη δυνατότητα

απόδειξης ιδιοτήτων ασφαλείας των συστημάτων που έχουν προδιαγραφεί.

Αντικείμενο της διατριβής αποτελεί η μοντελοποίηση και η επαλήθευση της

συμπεριφοράς έξυπνων συστημάτων με χρήση τεχνικών αλγεβρικών προδιαγρα-

φών.

Με τον όρο έξυπνα συστήματα (ή έξυπνοι πράκτορες) αναφερόμαστε στα

συστήματα τα οποία χρησιμοποιούνται στον Νέο ή Σημασιολογικό Ιστό ώστε να

εξασφαλίζεται η ανάγκη για αντιδραστικότητα (reactivity), αλληλεπίδραση και

επικοινωνία μεταξύ των διαφόρων συστατικών του. ΄Ενα έξυπνο σύστημα μπορεί

να οριστεί σαν μία αυτόνομη οντότητα η οποία παρατηρεί μέσω αισθητήρων το

περιβάλλον του και έπειτα με βάση τις παρατηρήσεις δρα κατάλληλα σε αυτό,

κατευθύνοντας δηλαδή τις δραστηριότητές του προς την επίτευξη των στόχων

του.

Λόγω της ιδιαιτερότητας των συστημάτων αυτών, και εξαιτίας της αύξησης

της ανάπτυξής τους καθώς και της χρήσης τους σε κρίσιμα συστήματα, οι

απαιτήσεις για αξιοπιστία, ασφάλεια και λειτουργικότητα έχουν οδηγήσει στην

ανάγκη για χρήση τυπικών μεθόδων για την ανάλυση τους και στην ανάπτυξη

νέων μεθοδολογιών προσανατολισμένων συγκεκριμένα σε αυτά τα συστήματα.

Σε αυτήν την διατριβή προτείνεται ένα πλαίσιο προδιαγραφής και επαλήθευ-

σης δύο βασικών κατηγοριών έξυπνων πρακτόρων, εκείνων των συστημάτων

των οποίων η συμπεριφορά ορίζεται μέσω αντιδραστικών κανόνων (reactive
rules) καθώς και εκείνων των οποίων οι ενέργειες εξαρτώνται από το περιβάλ-

λον τους (context-aware systems) καθώς προσαρμόζουν τη συμπεριφορά τους

ανάλογα με τις αλλαγές που παρατηρούν.

Στην πρώτη κατηγορία συστημάτων αρχικά προτείνεται μία τυπική σημασιο-

1

λογία των αναδραστικών κανόνων, βασισμένη στην άλγεβρα με κρυφούς τύπους,

έπειτα μελετάται η τυπική ανάλυση και επαλήθευση των έξυπνων συστημάτων

που ορίζονται μέσω αναδραστικών κανόνων με χρήση εξισωτικής λογικής, στη

συνέχεια προτείνεται η χρήση λογικής βασισμένης στην αναγραφή όρων για την

ανακάλυψη λαθών στη δομή των αναδραστικών κανόνων, όπως τερματισμού και

σύγκλισης, και τέλος συγκρίνονται οι προτεινόμενες προσεγγίσεις.

Στη δεύτερη κατηγορία συστημάτων, τα οποία κατά κανόνα είναι και πιο

σύνθετα, ορίζουμε την προδιαγραφή τους ως τη σύνθεση των προδιαγραφών

των επιμέρους συστατικών τους, δηλ. των προδιαγραφών που περιγράφουν

τους τύπους δεδομένων και τα συστατικά του συστήματος σαν Παρατηρήσι-

μα Συστήματα Μετάβασης - ένα είδος συμπεριφοριακού αντικειμένου - ώστε

να μπορέσει να εκφραστεί κατάλληλα η αλληλεπίδραση των συστατικών των

συστημάτων αυτων.

Στη συνέχεια με βάση τις προδιαγραφές και κάνοντας χρήση τεχνικών α-

πόδειξης θεωρήματος είναι δυνατή η επαλήθευση ιδιοτήτων των συστημάτων.

Το ότι ο δυναμικός χαρακτήρας του συστήματος προδιαγράφεται με κανόνες

μετάβασης και χρησιμοποιώντας εξισωτική λογική ή λογική αναγραφής, κάνει

τη μέθοδο αυτή καλύτερα κατανοητή και ευκολότερη από αντίστοιχες μεθόδους

που προαπαιτούν βαθύτερη γνώση των τεχνικών απόδειξης θεωρήματος ή που

βασιζονται σε λογικές ανώτερου επίπεδου.

Η εφαρμογή των προτεινόμενων μεθόδων παρουσιάζεται μέσα από τη με-

λέτη μιας σειράς περιπτώσεων που αντιστοιχούν σε σχετικά συστήματα και

πρωτόκολλα. Τα ζητήματα ασφαλείας για ένα έξυπνο σύστημα είναι μεγάλης

κρισιμότητας και γι’ αυτό το λόγο δεν θα μπορούσαν να παραλειφθούν. Στα

πλαίσια αυτά έχουν προδιαγραφεί και επαληθευθεί συστήματα έξυπνων πρα-

κτόρων από τη διεθνή βιβλιογραφία.

Στο τελευταίο κομμάτι της διατριβής προτείνεται μια επέκταση της μεθο-

δολογίας μοντελοποίησης και απόδειξης ιδιοτήτων που υποστηρίζεται από τη

γλώσσα CafeOBJ, κατάλληλη για την αυτοματοποίηση των αποδείξεων και

τη χρήση πιο σύγχρονων εργαλειών ανάλυσης προδιαγραφών, με χρήση του

συστήματος αυτόματης απόδειξης Athena. Προτείνεται μία μεθοδολογία αλ-

ληλεπίδρασης των δύο συστημάτων απόδειξης, ώστε να είμαστε σε θέση να

εκμεταλλευτούμε τα πλεονεκτήματα του καθενός ξεχωριστά, και παρουσιάζο-

νται παραδείγματα εφαρμογών της προτεινόμενης προσέγγισης σε πρωτόκολλα

που μελετώνται συχνά για τη δοκιμή εργαλείων επαλήθευσης σύνθετων συστη-

μάτων.

Λέξεις κλειδιά:

΄Εξυπνα Συστήματα, Τυπικές Μέθοδοι, Γλώσσες Αλγεβρικών Προδιαγραφών,

Τυπική Επαλήθευση, CafeOBJ, Παρατηρήσιμα Συστήματα Μετάβασης, Απόδει-

ξη Θεωρήματος, Επαγωγική Απόδειξη, Συμπεριφοριακές Προδιαγραφές, ΄Αλγε-

βρα με Κρυμμένους Τύπους, Αφηρημένος Τύπος Δεδομένων, Αφηρημένη Μη-

χανή Καταστάσεων, Αντιδραστικοί Κανόνες, Συστήματα που Εξαρτώνται από

το Περιβάλλον, Συστήματα Αυτόματης Απόδειξης, Athena.

2

Abstract

Formal methods are techniques, languages and tools based on mathematics,
which provide an unambiguous, strict mathematical description or specifi-
cation which is used for effective design, analysis and verification of desired
properties of the system.

An important branch of formal methods are algebraic specification lan-
guages with a rigorous basis on mathematical logical systems or combina-
tions of them. Such a language is CafeOBJ, an executable, new generation
algebraic specification language, member of the OBJ family languages. Its
main characteristic, that differentiates it from other formalisms, is its di-
rect support to behavioural specification paradigm since it embeds special
hidden sorts and behavioural operators in its syntax. Behavioural specifi-
cation is based on hidden algebra and supports an object oriented style of
algebraic specification. It also supports specification of distributed complex
systems as abstract state machines and verification of safety properties of
them through theorem proving techniques such as simultaneous induction
and coinduction.

The scope of the thesis is the modelling and verification of intelligent
agents using algebraic specification techniques.

By intelligent agents we refer to the systems used in the New or Semantic
Web in order to achieve the need for reactivity, interaction and communi-
cation between its various components. An intelligent agent can be defined
as an autonomous entity which observes through sensors and acts upon an
environment using actuators (i.e. it is an agent) and directs its activity
towards achieving goals.

Due to the special characteristics of such systems, and their increased
development as well as their use in critical domains, the requirements for
reliability, security and proper functionality has led to the use of formal
methods for their analysis and the development of new methodologies ori-
ented to these systems.

To this end, in this thesis an algebraic framework is proposed for the
specification and verification of two basic types of intelligent systems, those
whose behaviour is expressed in terms of reactive rules (reactive rule-based
systems) and those who can sense the changes in their physical environment
(context-aware systems), and adapt their behaviour accordingly.

In the first category of intelligent agents, we first give formal semantics,
based on the hidden algebra formalism, to the basic reactive rule families,
then we formally analyse and verify reactive rule-based systems using equa-
tional logic, next we propose the use of rewriting logic for the detection of
structural errors of the rules, such as termination and confluence, and finally
we compare the proposed approaches.

In the second type of agents, which are usually more complex, the spec-
ification of the system, is defined as the composition of the specifications of

3

its components, i.e. the specifications which describe data types as visible
sorts and the various components of the system as Observational Transition
Systems, a kind of behavioural object. In this way the complex interactions
of such systems can be expressed in a natural and dynamic way.

Based on the specification, verification of properties of the intelligent
system using theorem proving techniques is also feasible. The fact that the
system is specified as a transition system, using equational or rewriting logic,
makes the method easier to read, understand and learn than other related
methods, which prerequisite deeper knowledge of theorem proving, or that
are based in higher order logic for example.

To demonstrate the applicability and effectiveness of the proposed method-
ologies, a number of case studies are conducted. Security aspects of intelli-
gent systems are of major importance, and it was inevitable to take them
into account. To this end we present the verification of the behaviour of
various intelligent systems from the literature.

In the last section of the thesis, an extension of the specification and
verification methodology, supported by the CafeOBJ language, is proposed
that provides more automation for the proofs and allows the use of more
conventional verification tools, by integrating it with the Athena automated
theorem proving system. The proposed methodology is based on the inter-
action of the two languages so as to be able to exploit the nice properties of
each method and thus have better results in the verification process. Finally,
a number of applications of the methodology in protocols that are often used
as case studies, especially for tools dedicated to the verification of complex
systems, are presented.

Keywords:
Intelligent agents, Formal Methods, Algebraic Specification Languages, For-
mal Verification, CafeOBJ, Observational Transition Systems, Theorem Prov-
ing, Induction, Behavioural Specifications, Hidden Algebra, Abstract Data
Type, Abstract State Machine, Reactive rules, Context-aware systems, Au-
tomated theorem provers, Athena.

4

Ευχαριστίες

Θα ήθελα να ευχαριστήσω θερμά τον κ. Στεφανέα για τη συνεχή υποστήριξη

και την καθοδήγηση που μου παρείχε όλα αυτά τα χρόνια καθώς και για την

εμπιστοσύνη που μου έδειξε αλλά και την ενθάρυνση να ανακαλύψω και να

ακολουθήσω τα ερευνητικά μου ενδιαφέροντα.

Ακόμα χρωστάω ένα μεγάλο ευχαριστώ στον κ. Φράγκο για όλη την στήρι-

ξη που μου παρείχε με κάθε μέσο που διέθετε όπως επίσης και στην κα Λα-

μπροπούλου για όλα όσα έχει κάνει για εμένα.

Θα ήθελα να ευχαριστήσω και τον κ. Αρκούδα για τις ερευνητικές συζη-

τήσεις που είχαμε και τα χρήσιμα σχόλια που μου έδωσε.

Τέλος θα ήθελα να ευχαριστήσω την οικογένεια μου για όσα μου προσέφερε

και ιδιαίτερα τον Νίκο Τριανταφύλλου για όλα.

5

Acknowledgments

This research has been co-financed by the European Union (European So-
cial Fund - ESF) and Greek national funds through the Operational Pro-
gram ”Education and Lifelong Learning” of the National Strategic Reference
Framework (NSRF) - Research Funding Program: THALIS.

6

Contents

1 Introduction 9

2 Preliminaries - Theoretical Background 11
2.1 Algebraic specifications . 11
2.2 Behavioral specification . 11
2.3 Hidden Algebra . 12
2.4 CafeOBJ . 13

2.4.1 The behavioral specification paradigm 13
2.4.2 Behavioral Object Composition 14
2.4.3 Basic syntax and notation 14
2.4.4 Equational and rewriting logic 16

2.5 Observational Transition Systems 17
2.6 Timed Observational Transition Systems 18
2.7 The OTS/CafeOBJ methodology 18

3 Reactive Rules 21
3.1 On the Algebraic Semantics of Reactive Rules 25

3.1.1 Production Rules and OTS semantics 26
3.1.2 Event Condition Action (ECA) Rules and OTS se-

mantics . 31
3.1.3 Complex Events and OTS semantics 34
3.1.4 Knowledge Representation Rules and OTS semantics . 37

3.2 An Algebraic Framework for Modeling of Reactive Rule-based
Intelligent Agents . 40
3.2.1 Production Rules in CafeOBJ 41
3.2.2 Event Condition Action Rules in CafeOBJ 43
3.2.3 Complex Events and CafeOBJ 44
3.2.4 A Supply Chain Management System 46

3.3 On Verifying Reactive Rules Using Rewriting Logic 52
3.3.1 Reactive rules and CafeOBJ 53
3.3.2 Running example. 55
3.3.3 Proving termination properties 57
3.3.4 Proving confluence properties 58
3.3.5 Proving safety properties 60

3.4 Formal Analysis and Verification Support for Reactive rule-
based Agents . 63
3.4.1 A light-control intelligent system 64
3.4.2 From reactive rules to CafeOBJ rewrite rules 73

4 Context-aware Adaptive Systems 76
4.1 An Algebraic framework for the verification of context-aware

adaptive systems . 78

7

4.1.1 Proposed framework 79
4.1.2 A traffic monitoring system 84

5 On Integrating Algebraic Specifications with Polymorphic
Multi-Sorted First-Order Logic via Athena 98
5.1 Athena -First-Order Logic- proof system 99

5.1.1 Athena’s tools for OTSs verification 100
5.2 Proposed framework: Cafe2Athena, from CafeOBJ to Athena

Specifications . 102
5.2.1 Rules of translation 103
5.2.2 Semantic correctness of the translation 106
5.2.3 Cafe2Athena Tool . 108

5.3 A Mutual Exclusion Protocol Using an Atomic Instruction . . 109
5.3.1 Step 1. Specification in CafeOBJ. 109
5.3.2 Step 2. Specification in Athena. 110
5.3.3 Step 3. Define the desired goal and falsify it with

Athena. 112
5.3.4 Step 4. Start the proof of the desired goal using the

Proof Scores methodology. 113
5.3.5 Step 5. Falsify the discovered lemma with Athena. . . 114
5.3.6 Step 6. Continue the proof with the proof scores ap-

proach. 114
5.3.7 Step 7. Create an Athena proof based on the gained

insights. 115
5.4 Alternating Bit Protocol (ABP) 119

8

1 Introduction

Formal methods are mathematically based techniques for the specification,
verification and development of reliable software and hardware systems. For-
mal methods provide a wide range of techniques for reasoning about com-
puter systems that can contribute to the reliability and robustness of their
design. Formal design can be seen as a three step process [1]:

1. Formal Specification: During the formal specification phase, the en-
gineer rigorously defines a system using a formal language. Such lan-
guages are fixed grammars which allow users to model complex struc-
tures out of predefined types. This process of formal specification is
helpful in understanding the requirements of a system.

2. Verification: The process of formal verification can prove that a system
does not have defects or that it does satisfy desirable properties, which
is very important for software systems. Critical system requirements
like safety and liveness properties play important role in the system
specification, development and testing.

3. Implementation: Once the model has been specified and verified, it is
implemented by converting the specification into code.

Algebraic specifications, one of the major formal methods, use algebraic
modeling for the specification of the systems and then the designs are ver-
ified against requirements using algebraic techniques. Developments of al-
gebraic specification show that evolution of systems can be neatly modeled
by rewriting logic algebraically. It also shows that behavior of systems can
also be nicely modeled by hidden algebras [3]. CafeOBJ [2] is an algebraic
specification language and processor and it is used for the formal analysis
and verification of software systems. CafeOBJ adopts hidden algebra and
rewriting logic as its underlying logics. Its application areas include design
and validation of complex systems such as component based systems, secu-
rity systems and protocols, computer language systems, and many more.

On the other hand, nowadays, there is a strong demand for computer
systems to become more pervasive, to communicate and interact with each
other and to be able to handle reactivity on the Web efficiently. These ad-
vances in computer technology have resulted in intelligent computer systems,
which are often hard to understand and to program. Also, as the design of
computer software and hardware becomes more complex and ubiquitous sys-
tems are developed and used in critical domains, the need for such systems
to behave correctly increases.

The Semantic Web - also called New or Dynamic Web - is an extension
of the current web in which information is given well defined meaning, bet-
ter enabling computers and people to work in cooperation [4]. In order to

9

achieve reactivity and communication among the different components, the
New Web employs intelligent agents. An intelligent agent (IA) can be de-
fined as “a system situated within and a part of an environment that senses
that environment and acts on it, over time, in pursuit of its own agenda and
so as to effect what it senses in the future” [5].

A usual way to program intelligent agents and to define their behavior is
through the use of reactive rules. More precisely, reactive rules are used for
programming rule-based, reactive systems, which have the ability to detect
events and respond to them automatically in a timely manner. This creates
a main category of intelligent agents, the reactive rule-based systems. Such
systems are needed on the Web for bridging the gap between the existing
Web, where data sources can only be accessed to obtain information, and
the dynamic Web, where data sources are enriched with reactive behavior.
One more complex type of intelligent agents is the so called context-aware
or adaptive systems. Context-aware computing refers to a general class of
mobile systems that can sense the changes in their physical environment, and
adapt their behavior accordingly. Context-aware systems are a component of
a ubiquitous computing or pervasive computing environment. The common
characteristic of the above systems, and of most intelligent agents, is that
they can present complex and unpredictable behavior, and thus there is a
strong need for their formal analysis. We believe that algebraic specifications
are a suitable approach for specifying the dynamic behavior of these agents,
as they provide an intuitive approach to model complex distributed systems.
However, sometimes it is useful to use more conventional theorem proving
systems to automate the verification process and to ensure the soundness of
the proofs, especially when the systems become more critical.

To this end, in this thesis we study the unpredictable behavior of in-
telligent agents used in the Semantic Web, and we propose appropriate
methodologies, by exploiting the capabilities of the CafeOBJ language, for
agent reasoning and verification. The proposed approaches are validated
by applying them in illustrating case studies. We then investigate further
potentials of the CafeOBJ verification methodology, by combining it with
the Athena automated theorem prover. In this way, critical and complex
intelligent systems can be specified using traditional algebraic methods that
offer nice ways to model software systems, such as CafeOBJ, and then using
the combination of CafeOBJ and Athena proof systems, they can be verified
in a more sound and automatic way.

The rest of the thesis is organized as follows: in chapter 3 we formally
analyze and verify reactive rule-based systems. In chapter 4 we propose
a methodology for the verification of context-aware adaptive systems. In
chapter 5, we propose a methodology that integrates the CafeOBJ language
with the Athena automated theorem prover.

10

2 Preliminaries - Theoretical Background

Formal methods use mathematics and logics to formalize requirements, de-
signs and programs of systems, and verify that there are no inconsistencies
in requirements, designs enjoy requirements, and programs conforms to de-
signs [6]. Algebraic specification techniques have been developed in formal
methods and several algebraic specification languages and processors have
been proposed. CafeOBJ [7] is one such language and processor. Behavioral
specifications [8, 9] are algebraic specifications of systems behavior and can
be described in CafeOBJ.

2.1 Algebraic specifications

In more details, algebraic specification is a software engineering technique
for formally specifying systems behavior, which aims at:

• formally defining types of data, and mathematical operations on those
data types,

• abstracting implementation details, such as the size of representations
and the efficiency of obtaining outcome of computations,

• formalizing the computations and operations on data types,

• allowing for automation by formally restricting operations to this lim-
ited set of behaviors and data types.

An algebraic specification achieves these goals by defining one or more
data types, and specifying a collection of functions that operate on those
data types. These functions can be divided into two classes:

• constructor functions: functions that create or initialize the data ele-
ments, or construct complex elements from simpler ones, and

• additional functions: functions that operate on the data types, and
are defined in terms of the constructor functions.

2.2 Behavioral specification

Behavioral specification [8–10] provides a novel generalization of ordinary al-
gebraic specification. It characterizes how objects (and systems) behave, not
how they are implemented. This new form of abstraction can be very power-
ful in the specification and verification of software systems since it naturally
embeds other useful paradigms such as concurrency, object-orientation, con-
straints, nondeterminism, etc. (see [8] for details). Behavioral abstraction is
achieved by using specification with hidden sorts and a behavioral concept

11

of satisfaction based on the idea of in distinguishability of states that are ob-
servationally the same, which also generalizes process algebra and transition
systems (see [8]).

2.3 Hidden Algebra

Hidden Algebra is an approach for giving semantics to concurrent distributed
object oriented systems, as well as to software systems in general. It is
a version of behavioral type in the object oriented paradigm [11], called
behavioral specification.

For a set of sorts S, we say that the set A is S-sorted if it can be
regarded as a family of sub-sets as A = ∪{As}s∈S . Using this set of sorts,
we can define a signature Σ as the pair <S, F> where F is a set of function
symbols. Such that F is equipped with a mapping F → S∗ × S meaning
that each f ∈ F, f : s1 × · · · × sn → s. Then the type (or rank) of
f is defined as rank (f) = s1 . . . sns ∈ S∗. Given a signature as above,
a Σ-Algebra A consists of a non-empty family of carrier sets {As}s∈S and
a total function fA : As1 × . . . × Asn → As for each function symbol
f : s1 × · · · × sn → s ∈ F .

A Σ-homomorphism between two Σ-algebras A and B, denoted by h :
A→ B, is a family of maps {hs : As → Bs}s∈S that preserves the operators.
By imposing a partial ordering on the sorts we get an Order Sorted Σ-
Algebra (OSA).

An order sorted signature is a triple (S,≤,Σ) such that (S, Σ) is a many-
sorted signature, (S,≤) is a poset, and the operators satisfy the following
monotonicity condition; Σ ∈ Σw1,s1 ∩ Σw2,s2 and w1 ≤ w2 implies s1 ≤ s2.
Given a many-sorted signature, an (S, Σ)-algebra A is a family of sets
{As | s ∈ S} called the carriers of A, together with a function AΣ :w→ As for
each Σ in Σw,s. Where Aw = As1 × · · · ×Asn and w = s1 . . . sn.

Let (S,≤,Σ) be an order sorted signature. A (S,≤,Σ)-algebra is a (S,
Σ)-algebra A such that, s ≤ s′ in S implies As ⊆ As′ and Σ ∈ Σw1,s1∩Σw2,s2

and w1 ≤ w2 implies AΣ :w1→ As1 equals AΣ :w2→ As2 on Aw1 [8].
The purpose of the formalization of order sorted signatures is to define
sorts (similar to classes in OO), functions (similar to methods in OO) and
inheritance between the sorts.

In Hidden Algebra [8] two kinds of sorts exist: visible sorts and hidden
sorts. Visible sorts represent the data part of a specification while hidden
sorts denote the state of an abstract machine.

Given a signature (S,≤,Σ) and a subset H ⊂ S denoting the hidden
sorts, a hidden algebra (or a hidden model in general) A interprets the
visible sorts V and the operations Ψ of the visible sorts as a fixed model D
(the data model, say an order sorted algebra) such that A�V,Ψ = D (where
� is the model reduct). Given two signatures (S,≤,Σ) and (S′,≤,Σ′) a
signature morphism φ : (S,≤,Σ) → (S′,≤,Σ′) consists of a mapping z on

12

sorts that preserves the partial ordering, i.e. for s ≤ s′ then z(s) ≤ z(s′)
and an indexed mapping on operators g, such that {gs1...sn : Σs1...sns →
Σ′z(s1)...z(sn)f(s)}s1...sns∈S, n≥0.

We will refer to operators whose arguments contain a hidden sort and/or
whose arguments returned value is a hidden sort, as hidden or behavioral
operators.

The hidden signature morphism φ : (S,H,≤,Σ) → (S′, H ′,≤,Σ′) pre-
serves the visible and hidden part of the signatures and obeys to the following
conditions: (a) g maps each behavioral operator to a behavioral operator,
(b) if z(h) < z(h′) for arbitrary visible sorts h and h′ then h < h′ and (c) if
σ′ ∈ Σw′s′ is a behavioral operator where w ∈ (S

⋃
H)∗ and some sort of w

is hidden, then σ′ = g(σ) for some behavioral operator σ ∈ Σ.

2.4 CafeOBJ

2.4.1 The behavioral specification paradigm

CafeOBJ behavioral specification paradigm is based on coherent hidden al-
gebra (abbreviated CHA) of [9], which is both a simplification and exten-
sion of classical hidden algebra of [8] in several directions, most notably
by allowing operations with multiple hidden sorts in the arity. Coherent
hidden algebra comes very close to the observational logic of Bidoit and
Hennicker [10]. CafeOBJ directly supports behavioral specification and its
proof theory through special language constructs, such as [12]:

• hidden sorts (for states of systems),

• behavioral operations (for direct actions and observations on states of
systems),

• behavioral coherence declarations for (non-behavioral) operations (which
may be either derived (indirect) observations or constructors on states
of systems), and

• behavioral axioms (stating behavioral satisfaction).

The advanced coinduction proof method receives support in CafeOBJ
via a default (candidate) coinduction relation (denoted as =*=). Coinduc-
tion can be used either in the classical hidden algebra sense [8] for proving
behavioral equivalence of states of objects, or for proving behavioral tran-
sitions (which appear when applying behavioral abstraction to rewriting
logic). Besides language constructs, CafeOBJ supports behavioral specifi-
cation and verification by several methodologies. It currently highlights a
methodology for concurrent object composition which features high reusabil-
ity not only of specification code but also of verifications [7,13]. Behavioral
specification in CafeOBJ may also be effectively used as an object-oriented

13

(state-oriented) alternative for classical data-oriented specifications. Exper-
iments seem to indicate that an object-oriented style of specification even of
basic data types (such as sets, lists, etc.) may lead to higher simplicity of
code and drastic simplification of verification process [7].

Behavioral specification is reflected at the execution level by the concept
of behavioral rewriting [7,9] which refines ordinary rewriting with a condition
ensuring the correctness of the use of behavioral equations in proving strict
equalities.

2.4.2 Behavioral Object Composition

CafeOBJ supports the object composition [14–16] of distributed static and
dynamic systems that allows both reusability of specification code and proofs.
Engineers can start from small valid and easy to handle specifications and
incrementally combine them to build the complete specification of the whole
system. Reusing specifications is done by projection operators. Projection
operators are defined for the composing objects in order to obtain their
states from the state of composed object. Using them, all methods of the
composed object are related to those of the composing objects.

Hidden Algebra extends ordinary many sorted algebra [17] with extra
sorts representing the “states” of an object or an abstract machine or a
behavioral object (BO). Behavioral Object Composition has been defined
formally in [15]. The objects with no components are called base-level ob-
jects. A composition is represented with arrows whose heads are diamonds,
and if necessary, qualified by the numbers of components (1 for one and *
for many). Also, the circle at the tail of an arrow denotes that the com-
posite object contains an arbitrary amount of components. We can retrieve
the state of the component objects via Projection Operators [13,16], special
observers of the composite object that given a state of the composite object
return the state of one base-level object. There are several ways to com-
pose an object. Parallel Composition with Synchronization occurs when the
changes in the state of one object may alter the state of an object in the
same level. In respect to the number of objects that compose a composite
object, we have Dynamic Composition if the number of component objects
is not fixed. Else the composition is called Static. Hierarchical behavioral
object composition can be represented in UML [18] notation in the figure
below.

2.4.3 Basic syntax and notation

CafeOBJ algebraic specification language [7] can be used for the specification
and verification of complex software systems. The basic units of CafeOBJ
are its modules. There are two kinds of modules in CafeOBJ, tight and
loose modules. A tight module only accepts the smallest implementation

14

Figure 1: UML notation for hierarchical behavioral object composition.

that satisfies what are specified in the module, while a loose module can
accept any implementations (that satisfy them). A tight module is declared
with the keyword mod!, and a loose module with the keyword mod∗.

In CafeOBJ modules, we can declare module imports, sorts, operators,
variables and equations. Operators without arguments are called constants.
Built-in operators denoting logical connectives can be used to declare nega-
tion, conjunction, disjunction, implication, and exclusive disjunction. Op-
erators can have attributes such as comm that specifies that the binary
operator is commutative. Conditional equations can also be declared inside
a module. Operators are declared with the keyword op (or ops if there
are many). The constructor operators of the sorts are declared with the
attribute constr. The non-constructor operators, or some properties of the
operators are defined in equations.

Here for example, is the specification of the list data structure in CafeOBJ.
A line that starts with --, -->, **, or **> is a comment.

-- > trivial set of elements

mod* TRIV* {[Elt]}

-- > parameterized list

mod* LIST (X :: TRIV*) {

[Nil NnList < List]

op nil : -> Nil {constr}

op _|_ : Elt List -> NnList {constr}

-- equality on the sort List

op _=_ : List List -> Bool {comm}

eq (L:List = L) = true .

ceq L1:List = L2:List if (L1 = L2) .

}

As we can see, the module TRIV* only declares the sort Elt. The module

15

LIST defines a parameterized list structure. [Nil NnList < List] declares
three sorts and sub-sort relations among them; sorts Nil and NnList are
sub-sorts (i.e. are interpreted as subsets) of sort List. The operators nil

and | are defined with constructor attribute and thus define the way the
sorts Nil, NnList, and List are constructed. For more details we refer the
interested reader to [19].

2.4.4 Equational and rewriting logic

CafeOBJ supports both equational theory and rewrite theory specifications.
State transitions are described in equations in the former and in rewriting
rules in the latter. Equational theory specification is used for interactive the-
orem proving whereas for rewrite theory specification, CafeOBJ can conduct
exhaustive searches. In [20] an attempt to combine the above is presented.
They describe a way to theorem prove that rewrite theory specifications
have invariant properties by proof score writing.

In equational logic the transitions between the states of the system are
modeled with constructor operators that change its state (which is denoted
by a sort, say State). The structure of a state is abstracted by the observa-
tion operators (or observers), each one returning an observable information
about the state. The meaning of an observer is formally described by means
of (conditional) equations, depending on whether the transition has an ef-
fective condition or not (a condition that must hold for the transition to
be applied). These equations define how the value of each observer changes
after the application of a transition rule.

Rewriting logic in CafeOBJ is based on a simplified version of Meseguer’s
rewriting logic [21] for concurrent systems which gives an extension of tradi-
tional algebraic specification towards concurrency. CafeOBJ design does not
fully support labeled rewriting logic which permits full reasoning about mul-
tiple transitions between states, but supports reasoning about the existence
of transitions between states (or configurations) of concurrent systems via a
built-in predicate (denoted as ==>) with dynamic definition encoding both
the proof theory of rewriting logic and the user defined transitions [22]. This
predicate evaluates to true whenever there exists a transition from the left
hand side argument to the right hand side argument [22]. More precisely,
for a ground term t, a pattern p and an optional condition c, CafeOBJ
can traverse all the terms reachable from t wrt. transitions in a breadth-
first manner and find terms (called solutions) such that they are matched
with p and c holds for them. This can be done using the command: red

t =(k,d)=>* p [suchThat c], where k is the maximum number of solu-
tions and d is the maximum depth of search. Also, a natural number, id is
assigned to each term visited by a search and then by using the command
show path id a transition path to the term identified by id is displayed.
Typically, the command is used to display a transition path to a solution

16

found by a search from t [20].

2.5 Observational Transition Systems

An Observational Transition System (OTS) is a transition system written
in terms of equations [23, 24] and is a proper subclass of behavioral specifi-
cations [8]. We assume that there exists a universal state space Y and that
each data type we need to use has been declared in advance. An OTS S is
defined as the triplet S = 〈O, I, T 〉 where [25]:

• O is a set of observers. Each o ∈ O is a function o : Y Do1 . . . Dom →
Do, where Di denotes some data-type. Given an OTS S and two
states u1, u2 the equivalence between them is defined with respect
to the values returned by the observers, i.e. u1 =S u2 if and only
if for each o ∈ O, o(u1, x1, . . . , xm) = o(u2, x1, . . . , xm) for all x1 ∈
Do1, . . . , xm ∈ Dom.

• I is the set of initial states, such that I ⊆ Y .

• T is a set of conditional transitions. Each t ∈ T is a function t :
Y Dt1 . . . Dtn → Y . Each transition t, together with any other param-
eters y1, . . . , yn, preserves the equivalence between two states, i.e. if
u1 =S u2, then for each t ∈ T , t(u1, y1, . . . , yn) =S t(u2, y1, . . . , yn)
for all y1 ∈ Dt1, . . . , yn ∈ Dtn. Each t has the effective condition c-t :
Y Dt1 . . . Dtn → Bool. If ¬ c-t(u, y1, . . . , yn), then t(u, y1, . . . , yn) =S

u. t(u, y1, . . . , yn) is called a successor state of a state u. We write
u S u

′ iff a state u′ ∈ Y is a successor state of a state u ∈ Y .

An execution of an OTS S is an infinite sequence u0, u1, . . . of states
satisfying the following:

- Initiation: u0 ∈ I,

- Consecution: For each i ∈ N , there exists t ∈ T such that ui + 1 =S

t(ui).

Assume that εs is the set of all executions obtained from S. A state u ∈ Y
appears in an execution u0, u1, . . . of an OTS S, denoted by u ∈ u0, u1, . . .
if there exists i ∈ N such that u =S ui.

A state u ∈ Y is called reachable with respect to an OTS S, if and only
if there exists an execution e ∈ εs such that u ∈ e. Let RS be the set of all
reachable states with respect to S1.

1RS is the type denoting the set of all reachable states wrt S. Also Sys denotes RS

but not Y if the constructor-based logic is adopted, which is the current logic underlying
the OTS/CafeOBJ method.

17

CafeOBJ is used to specify Observational Transition Systems. The uni-
versal state space Y of an OTS is denoted in CafeOBJ by a hidden sort,
say Sys. Each observer is denoted by an observation operator. Any state
in I is denoted by a constant and each transition by an action operator.
The transitions are defined by describing what the value, returned by each
observer in the successor state, becomes when the transitions are applied in
a state u. Finally, when the effective condition holds, this is expressed by a
conditional equation.

2.6 Timed Observational Transition Systems

Timed observational transition systems (TOTSs) are OTSs that are evolved
by introducing clock observers in order to deal with timing. Again Y denotes
a universal state space. Let B, N and R+ be a set of truth values, a set of
natural numbers and a set of non-negative real numbers, respectively. A
TOTS S = 〈O, I, T ∪ {tickr | r ∈ R+}〉 where [9]:

1. O is a set of observers. The set O = D ∪C is classified into the set D
of discrete observers and the set C of clock observers. Clock observers
may be also called clocks. The discrete observers are defined in the
same way as the observers of an ordinary OTS.

2. I is the set of initial states such that I ⊆ Y.

3. T ∪ {tickr | r ∈ R+} is a set of conditional transitions. Each t ∈
T ∪ {tickr | r ∈ R+} is a function t : Y → Y .

For each clock observer o ∈ C where o : Y → D, D is a subset (subtype)
of R+ ∪ {∞}. For each t ∈ T , there are two clocks lt : Y → R+ and
ut : Y → {R+} ∪ {∞}, which return the lower and upper bounds of t,
respectively. They are basically used to force t to be executed, or applied
between the lower bound returned by lt and the upper bound returned by
ut. There is also one special clock, called now : Y → R+. It serves as the
master clock and returns the time amount that has passed after starting the
execution of S. now initially returns zero. Thus, C contains the two clocks
lt and ut for each t ∈ T , and the master clock now. For each t ∈ T , its
effective condition consists of the timing part and the non-timing part. The
non-timing part is denoted by ct. Given a state u ∈ Y , the timing effective
condition is lt ≤ now(u) .Each tickr is a time advancing transition. Given
a state u ∈ Y , for each tickr, its effective condition is now(u) + r ≤ ut(u)
for each t ∈ T , and now(tickr(u)) is now(u) + r if the effective condition of
tickr is true in u.

2.7 The OTS/CafeOBJ methodology

One of the main advantages of using algebraic specifications is the ability
to verify that the specified system preserves critical properties. For this

18

reason, CafeOBJ is equipped with its processor called the CafeOBJ system,
which serves as a theorem prover. The CafeOBJ system verifies the desired
properties by using the equations of the theory that defines the OTS as left
to right rewrite rules. The theorem proving technique that is used in order
to verify the desired properties is called the OTS/CafeOBJ method or Proof
Scores approach [24, 26] and is a computer human interactive method. A
Proof Score is a plan to verify that a property holds for a specification. This
is implemented as a set of instructions written by a human to the proof
engine, such that when executed, and if everything evaluates as expected, a
desired theorem is proved (computer human interaction).

This method hides the tedious calculations done by the machine, and
reveals the proof plan created by the human. The main differences from
model checking are the ability to deal with systems that have an infinite
number of states, the natural affinity for abstraction and finally the em-
phasis on re-usability [26]. Also, this approach to verification is sometimes
preferable to fully automated ones, because the latter often fails to convey
to the user an understanding of the proof. Automated theorem provers can
reason if a property holds or not, but usually do not provide enough feed-
back when the proof fails. So the user is unaware whether the failure is due
to some design error, if additional input is required or if finally a lemma is
needed. In contrast, in the OTS/CafeOBJ method if the proof fails, either
an expression or a false message is returned to the user. In both cases the
system’s states that returned these outputs are fully defined and the user
can intervene and either provide additional input (first case) or reason and
formally prove that the case should not be reached by the system (second
case) or even refine the specification because the property does not hold
(second case). Another benefit of this method, is that the proof plan is exe-
cuted over the specification. As a result the level of abstraction of the proof
equals the level of the specification. Usually with this method the goal is to
verify design not implementation. A more thorough analysis of the benefits
of the OTS/CafeOBJ verification methodology as well as of its disadvan-
tages will be presented in the last chapter of the thesis. In the same chapter
a more detailed comparison of this method with other proving systems and
verification techniques will be given as well.

The OTS/CafeOBJ method can be used to verify both liveness properties
(something will eventually happen) and invariants (something holds) of the
specified system. In this thesis, we focus on the second type of properties.
A property for a system is called invariant if it holds in any given reachable
state of the system. Roughly speaking, an invariant property can be proved
with the Proof Score method in 4 steps. First, we formally express the
property we want to prove as a predicate in CafeOBJ terms in a module.
Next we must write the inductive step as a predicate that contains two states
s and s′, denoting an arbitrary state and its successor respectively, and that
defines that if the invariant holds in s then that implies that it holds in s′.

19

Then we can ask CafeOBJ to prove via term rewriting (using the reduce
command), if the property holds for an arbitrary initial state. Finally, using
all the transition rules in turn, we must instantiate s′ and ask CafeOBJ to
prove the inductive step for each case.

In a nutshell, after asking CafeOBJ to prove such an expression three
results might be returned by the system. If true is returned this means that
the proof was successful. If a CafeOBJ term is returned, different to true or
false, this means that there exist some terms that the system cannot fully
reduce. The user must split the case, by stating that the problematic term
equals to true and false in turn (computer-human interactive method). This
creates two new proof obligations. This is known as case splitting. A usual
example is the effective conditions of transitions in arbitrary sates. Finally,
if false is returned, two things might hold. The property does not hold for
our system, or the case that returned false is unreachable. In the first case
we have found a counter example case and it might be necessary to redesign
our system. In the second case we must create a lemma, a new invariant
property, which states that the case that returned false is not reachable. Of
course in this case the lemma must be proved separately. The OTS/CafeOBJ
methodology as well as its steps and possible outputs will be presented in
details and explained through the running examples and case studies of the
thesis.

20

3 Reactive Rules

The Web has traditionally been perceived as a distributed repository of
hypermedia documents and data sources with clients (in general browsers)
that retrieve documents and data, and servers that store them. Although
reflecting a widespread use of the Web, this perception is not accurate. With
the emergence of Web applications, Web Services, and Web 2.0, the Web
has become much more dynamic.

Reactivity on the Web, i.e. the ability to detect events and respond
to them automatically in a timely manner, is needed for bridging the gap
between the passive Web, where data sources can only be accessed to obtain
information, and the dynamic Web, where data sources are enriched with
reactive behavior.

Reactivity is a broad notion that spans Web applications such as e-
commerce platforms that react to user input (e.g. putting an item into
the shopping basket), Web Services that react to notifications or service
requests (e.g. SOAP messages), and distributed Web information systems
that react to updates in other systems elsewhere on the Web (e.g. update
propagation among biological Web databases). Such Web nodes (applica-
tions, sites, services, agents, etc.) constantly react to events bringing new
information or making existing information outdated and change the con-
tent of data sources. Programming reactive behavior entails (1) detecting
situations that require a reaction and (2) responding with an appropriate
state-changing action. We present in the following some applications of re-
active behavior on the Web [27].

Shopping Cart. This example shows how a simple reactive rule set cal-
culates the shopping discount of a customer. The business rules describing
the discount allocation policy is listed hereafter:

1. If the total amount of the customer’s shopping is higher than 100, then
perform a discount of 10%.

2. If it is the first shopping of the customer, then perform a discount of
5%.

3. If the client has a gold status and buys more than 5 discounted items,
then perform an additional discount of 2%.

21

Rules 1 and 2 must not be applied for the same customer, the first rule
has the priority against the second. The third rule is applied only if rule 1
or rule 2 have been applied.

Those policies might be taken into account by a reactive rule service
(Web service, procedural application, etc.). This service receives the cus-
tomer and his shopping cart information as input. The discount calculation
is then processed following the previous rules and returns the discount value
to the service caller.

Credit Analysis. This example shows how a simple reactive rule set de-
fines a loan acceptance service. It determines whether a loan is accepted,
depending on the client’s history and the loan request duration. A client’s
score is calculated according to the following business policy. If the client’s
score is high enough, the loan is accepted and its rate is calculated.

1. If the loan duration is lower than five years then set the loan rate to
4% and add 5 to the score, else set it to 6%.

2. If the client has filed a bankruptcy, subtract 5 to the score.

3. If the client’s salary is between 20000 and 40000, add 10 to the score.

4. If the client’s salary is greater than 40000, add 15 to the score.

5. If the score is upper than 15, then the loan is accepted.

Those policies are usually implemented by a rule service (Web service,
application). This service receives the loan request as input information, ap-
plies the rule on them in order to check the acceptance, and finally returns
to the caller the loan characteristics.

Distributed Information Portal. Many data sources on the Web are
evolving in the sense that they change their content over time in reaction to
events bringing new information or making existing information outdated.
Often, such changes must be mirrored in data on other Web nodes up-
dates need to be propagated. For Web applications, such as distributed
information portals, where data is distributed over the Web and part of
it is replicated, update propagation is a prerequisite for keeping data con-
sistent. As a concrete application example, consider the setting of several
distributed Web sites of a fictitious scientific community of historians called
the Eighteenth Century Studies Society (ECSS). ECSS is subdivided into
participating universities, thematic working groups, and project manage-
ment. Universities, working groups, and project management have each
their own Web site, which is maintained and administered locally. The
different Web sites are autonomous, but cooperate to evolve together and
mirror relevant changes from other Web sites. The ECSS Web sites maintain

22

(XML or RDF) data about members, publications, meetings, library books,
and newsletters. Data is often shared, for example a member’s personal data
is present at his home university, at the management node, and in the work-
ing groups he participates in. Such shared data needs to be kept consistent
among different nodes. This can be realized by communicating changes as
events between the different nodes using reactive rules. Events that occur in
this community include changes in the personal data of members, keeping
track of the inventory of the community-owned library, or simply announc-
ing information from email newsletters to interested working groups. These
events require reactions such as updates, deletion, alteration, or propagation
of data, which can also be implemented using reactive rules. Full member
management of the ECSS community, a community-owned and distributed
virtual library (e.g., lending books, monitions, reservations), meeting orga-
nization (e.g., scheduling panel moderators), and newsletter distribution are
desirable features of such a Web-based information portal. And all these can
be elegantly implemented by means of reactive rules.

Many Web-based systems need to have the capability to react not only
to simple events but also to situations represented by temporal combinations
of events. For communicating events on the Web two strategies are possi-
ble: the push strategy, i.e. a Web node informs (possibly) interested Web
nodes about events, and the pull strategy, i.e. interested Web nodes query
periodically (poll) persistent data found at other Web nodes in order to de-
termine changes. Both strategies are useful. A push strategy has several
advantages over a strategy of periodical polling: it allows faster reaction,
avoids unnecessary network traffic, and saves local resources.

Different approaches can be followed for implementing Web applications
having the capabilities mentioned above. Compared with general purpose
programming languages and frameworks, rule-based programming brings in
declarativity, fine-grain modularity, and higher abstraction. Moreover, mod-
ern rule-based frameworks add natural-language-like syntax and support for
the life cycle of rules. All these features make it easier to write, understand,
and maintain rule-based applications, including for non-technical users.

Reactive rules are thus high-level, elegant means to implement reac-
tive Web applications whose architecture imply more than one Web compo-
nents/nodes and their communication is based on exchanging events. The
issues of using, developing and analyzing reactive rules begin to play an
increasingly important role within business strategy on the Web and event-
driven applications are being more widely deployed.

In this chapter we first present formal semantics for some of the most
common families of Reactive rules, based on the formalism of Hidden Al-
gebra. We propose the use of the CafeOBJ specification language, which
adopts hidden algebra as its underlying logic, for the verification of safety
properties for reactive rule-based intelligent agents. Next, we propose a
methodology, based on rewriting logic specifications written in CafeOBJ,

23

for verifying safety properties about systems whose behavior is expressed
in terms of reactive rules but also for reasoning about structural errors of
the rules. Finally, we revise the proposed verification methodologies, and
we present a formal framework which allows reasoning about the specified
rule-based system, verification of safety properties of the rules, detection of
termination and confluence errors of the rules, and provides a clear under-
standing of the rule based system by simulating the execution behavior of
the rules.

24

3.1 On the Algebraic Semantics of Reactive Rules

We present a Hidden Algebra approach that can be used to formally define
some of the most common families of Reactive Rules. While there are many
approaches in terms of expressing the meaning of reactive rules, our contri-
bution focuses on the foundations for creating libraries of rules with verified
behavior and allows the composition of these rules in order to create more
complex rule bases that preserve desired properties. This can be achieved
due to the strong modularisation properties of hidden algebra, such as in-
formation hiding, renaming and sum. Hidden algebra has been successfully
applied to system’s design verification [8]. By expressing reactive rules in
the same framework we could reason not only about the rules but also on
their behavior in particular systems.

In more details, in the following we give Observational Transition Sys-
tem (OTS) semantics for production (PR), event condition action (ECA)
and knowledge representation rules (KR) as well as for complex event pro-
cessing (CEP), and present some case studies. This semantics will allow the
mapping between Rule Markup Languages and Behavioral Algebraic Spec-
ification Languages. Verification techniques for reactive rules, will provide
automated reasoning capabilities and support the development of new rule
based policies and trust models.

Reactive Rules for event driven applications started to be used exten-
sively during the 1990s. The interest was on rules that specify the behavior
of systems that trigger actions as response to the detection of events from
the environment. As the authors of [28] point out, today’s research on Event
Driven Architecture IT infrastructures like on-Demand or Utility Comput-
ing, Real- Time Enterprise, Business Activity Management and so on, is
intensive. In addition, a new push has been given in the field due to the
strong demand of the web community for event processing functionalities
for Semantic Web Markup Rule Languages such as RuleML.

Many different approaches to reactive event processing have been devel-
oped over the years. As analyzed in [28], in active databases the focus is
on the support of automatic triggering of global rules in response to either
internal updates or external events. In event notification and messaging
systems, the focus is on the sequence of events in a given context, while in
event/action logics it is on the inferences that can be made from the fact
that certain events have occurred. For a survey on the event/action/state
processing space we refer the interested reader to [29].

The most important families of reactive rules used in the Semantic Web
community are Production rules, Event Condition Action (ECA) rules and
Knowledge Representation (KR) rules. Also great interest is shown for the
definition of Complex Events. Here we will present an Observational Tran-
sition System (OTS) semantics for the rule families depicted in the figure
below.

25

3.1.1 Production Rules and OTS semantics

Production rule systems use a set of condition-action rules cyclically invoking
(assert, retract, etc.) actions when tests over their working memory succeed.
Their syntax is: if Ci do Ai, where Ai denotes an action that must be applied
automatically by the system when it detects that the conditions denoted as
Ci hold.

Our aim is to provide an OTS semantics to production rules. The se-
mantics of these actions Ai could be those of transition rules in an OTS,
because both transition rules and actions Ai cause explicit changes to the
state of the system when they are applied. The conditions defined above
can be mapped to (or be part of) the effective conditions of the transition
rules.

So at first, it looks like the OTS semantics of production rules are quite
straightforward. But a closer look will reveal that there is an error in the
previous reasoning. In the OTS approach we can define under which condi-
tions the transitions will be successful but it is not possible to enforce the
application of those transitions on a state. On the other hand the produc-
tion rules system must react in the desired way when the conditions are met.
So the semantics of production rules in OTS should be the enforcement of
the application of a transition rule in a system state.

Here, we will attempt to give such semantics by providing a typing on
the states of an OTS. Then we will define an OTS that contains only tran-
sition rules from the typed states, which can be regarded as a sort of typed
OTS. Recall that an OTS corresponds to an order sorted hidden algebra
(S,≤,Σ). We will use the hidden sorts, defined as H ⊂ S, to produce the
typing system. For the following we assume a set of hidden sorts H, denot-
ing the state space of the OTS Y , meaning that ∀u ∈ Y , ∃h ∈ H such that
the sort of u belongs to the sort h.

Definition 1. Suppose that the OTS contains n-transition rules: τi : H D1i

... Dni → H, i ∈ (1, . . . , N) and that each transition rule is affected by the
effective condition c-τi : HD1i . . . Dni → Bool. For each transition τi and

Figure 2: Reaction rules families and OTS

26

for all visible sort constants dki ∈ Dki such that there ∃u ∈ Y for which
c-τi(u, d1i , ..., dni) = true we define:

• a hidden sub-sort, hid1i ... dni
≤ H. Such that ∀u ∈ hid1i ... dni

we have
that c-τi(u, d1i , . . . , dni) = true. This is the hidden sub-sort that sat-
isfies the effective condition of the transition rule τi for visible sort
arguments d1i , . . . , dni .

• also for each transition rule τi : HD1i . . . Dni → H we define a new
transition τ ′id1i ...dni

: hid1i ...ni
→ H, such that τ ′i(u) = τi(u, d1i , . . . , dni)

∀u ∈ hid1i ... dni
.

We will call the OTS S′ = 〈O′, I ′, T ′〉 defined from S = 〈O, I, T 〉 as

- O′ = O

- T ′ = {τ ′i |τi ∈ T}

- I ′ = I

the production OTS of S .

For a given state of the system u ∈ Y it is possible to decide if it belongs
to a sort or not, by checking whether ∃ dik such that c-τi(u, di1 , . . . , din) =
true. If the previous expression holds then u ∈ hidi1 ...din . The next definition
describes how with the above formalism we can semantically interpret a set
of production rules as an OTS.

Definition 2. Assume now a set of production rules: if Ci do Ai, i ∈
{1, . . . , N}. In such a set of rules Ci defines a set of constraints that when
they hold the system should automatically apply the action(s) Ai. We de-
fine an OTS S = 〈O, I, T 〉 such that the actions Ai’s of the above rules
are mapped to some transition rules τi’s and the conditions Ci’s to effective
conditions c-τi’s. The production OTS S′ = 〈O′, I ′, T ′〉, created from S us-
ing definition 1 is the semantic interpretation of the production rules in the
OTS framework.

Example 1. As an example of the previous definition consider the fol-
lowing production rule for an online store: “If the status of a client is
premium and the type of product is regular then assert discount of 25 per-
cent for the customer” [30]. It possible to fully characterize the above sys-
tem with a set of queries (observers) as those in the table above, where
Client, Status, Product, Percent and Type are appropriate predefined vis-
ible sorts. For this reason, we map the assert action to a transition rule,
assert : H Client Product→ H. Given a client C and a product P , the ef-
fective condition for this transition rule is defined by the signature c-assert :
H Client Product→ Bool and the equation:

27

c− assert(H,C, P) = (client− status(H,C) = premium)&

(product− type((H,P) = regular)

Now for each pair of constants ci and pi such that there exists a system
state u that makes c-assert(u, ci, pi) = true, we define a new sub sort hcipi ≤
H. Finally for each such sub sort we define a transition rule, asserti :
hcipi → H, such that ∀u ∈ hcipi we have; asserti(u) = assert(u, ci, pi).
These transition rules can only be applied in states u ∈ hcipi , and in those
states they are the only applicable transitions. So basically in an OTS
containing only these transition rules we are enforcing the application of the
desired transitions.

Following definition 2 we define the OTS S′ = 〈O′, I ′, T ′〉 that corre-
sponds to the production rule as follows:

- O′ = {client-status, product-type, discount}

- I ′ the set of initial states

- T ′ = {asserti | such that hcipi ≤ H}

In languages that implement OTS specifications however, definition 2
cannot be easily applied (possible infinity of sub-sorts). For this reason we
present a ’specificational’ approach to the semantics of production rules and
prove that the two OTSs, S and S′ defining the state spaces Y and Y ′

respectively, are behaviorally equivalent1 [8].
In an OTS, a state is a kind of a black box. This means that each

state is characterized only by the observable values returned by the ob-
servers o ∈ O. As a result, the effect of a transition rule (or a change of
the state in general) can be characterized by the values returned by these
observers. Now assuming a set of production rules of the form ifCi do Ai,

1We will show that if S and S′ have the same set of initial states and the same set of ob-
servers O then for u ∈ Y and u′ ∈ Y ′ such that ∀o ∈ O, o(u, y1, . . . yn) = o(u′, y1, . . . , yn)
applying a transition rule τ of S and τ ′ of S′ will result in states τ(u), τ ′(u′) such that
o(τ(u), y1, . . . , yn) = o(τ ′(u′), y1, . . . , yn) ∀o ∈ O.

Table 1: Observers of an OTS specifying a client discount system
Observer Signature Informal Definition

client-status H Client→ Status Returns the status of the
client.

product-type H Product→ Type Returns the type of the prod-
uct.

discount H Client Product→ Percent Returns the discount the
client has on a product.

28

with i ∈ {1, . . . , N}, we would ideally wish to correspond action Ai to a
transition rule τi with an effective condition Ci. As we argued before it is
not possible to enforce the application of a transition rule in an OTS. On
the other hand it is possible to have conditional observations. So for an ar-
bitrary state u ∈ Y we have that after the application of the transition rule
τi, o1(τi(u, d1, ..., dn), v1, ..., vk) = v1 if Ci(u, d1, ..., dn). These observations,
led us to the following definition.

Definition 3. We define an OTS S = 〈O, I, T 〉 from a set of production
rules if Ci do Ai, with i ∈ {1, . . . , N} as:

- T = {read}, i.e. the only transition rule is read : H → H, a single
transition with no input.

- I is a set of initial states, such that I ⊆ Y .

- O = {o1, . . . , ok} is a finite set of observers. Each observer oi :
H Vi1 . . .
Vin Di1 . . . Dik → H satisfies the following equations for an arbitrary
system state u:

oi(read(u), vii , ..., vin , di1 , ..., dik) = v1 if C1(u, di1 , ..., dik)

oi(read(u), vii , ..., vin , di1 , ..., dik) = v2 if C2(u, di1 , ..., dik)

. . .

oi(read(u), vii , ..., vin , di1 , ..., dik) = vN if CN (u, di1 , ..., dik)

Also ∀di1 , . . . , dik , d′i1 , . . . , d
′
ik

we have that ∀oi ∈ O, u ∈ I:

oi(u, vii , . . . , vin , di1 , . . . , dik) = oi(u, vii , . . . , vin , d
′
i1 , . . . , d

′
ik

)

This means that initially the values returned by the observers are
only depended on the visible sorts vii , . . . , vin and not on the extra
arguments di1 , . . . , dik that are added to allow us to reason about the
effective conditions of the transitions. Finally:

oi(read(u), vii , . . . , vin , di1 , . . . , dik) = oi(u, vii , . . . , vin , di1 , . . . , dik)

if¬(C1(u, di1 , . . . , dik) ∨ · · · ∨ CN (u, di1 , . . . , dik)

The intuition behind the previous definition is that we have a system
that has one transition only. This transition basically checks to see if any
of the conditions defined by the production rules are met and if so it auto-
matically changes the values returned by the observers to those we would

29

expect if the corresponding to the condition action was applied.

Proposition 1. Two OTSs defined from a set of production rules R, using
definitions 2 and 3 that have the same set of initial states are behaviorally
equivalent, according to observational equivalence.

Proof. Since the two OTSs are equivalent for the initial states it remains
to show the following:

(→) If we apply an arbitrary transition rule τ ∈ T1 to an arbitrary state
u ∈ Y1 such that u is behaviorally equivalent to a state of Y2 then the only
applicable transition from T2 will lead us to a state that is behaviorally
equivalent to τ(u). So assuming u ∈ Y1 then we can decide if ∃ i, di1 , . . . , din
such as u ∈ hidi1 ,...,din . We discriminate two cases.

1. If there are not such i, di1 , . . . , din then this means that there are no
applicable transition rules in S1 and that ∀i, di1 , . . . , din we have that
Ci(u, di1 , . . . , din) = false. But then by applying the only transition
rule of S2 to u′ ∈ Y2 (the behaviorally equivalent state of u) we will
have that ∀oi2 ∈ O2, ∀di1 , . . . , dik ; oi2(read(u′), vi1 , . . . , vin , di1 , . . . , dik)
= oi2(u′, vi1 , . . . , vin , di1 , . . . , dik). So u′ and read(u′) are behaviorally
equivalent, but then so is read(u′) with the state of S1 u that remains
unchanged because there is no applicable transition in S1 for u.

2. If there exists i, di1 , . . . , din such that u ∈ hidi1 ,...,din , this means that
the only applicable transition for S1 is τidi1 ,...,din. This implies that
Ci(u, di1 , . . . , din) = true, and also ∀oj1 ∈ O1 we have that oj1(τidi1 ,...,din
(u), vj1 , . . . , vjn) = vji = oj1(τi(u, di1 , . . . , din), vj1 , . . . , vjn). But now
since Ci(u, di1 , . . . , din) = true, in S2 we have that ∀oj2 ∈ O2, after the
application of the only transition rule read(u), oj2(read(u), vj1 , . . . , vjn ,
di1 , . . . , din) = vji . So read(u) and τidi1 ,...,din(u) are behaviorally equiv-
alent since all the corresponding observers return the same values.

(←) It remains to show that by applying an arbitrary transition on S2 we get
a behaviorally equivalent state in S1. The only transition we can apply in
S2 is read(). Then ∀oj2 ∈ O2 if oj2(read(u), vj1 , . . . , vjn , di1 , . . . , din) = vji
then Cj(u, di1 , . . . , din) = true. But then in S1 we will have that u ∈
hidi1 ,...,din. But from definition 1 the only transition allowed to u is τidi1 ,...,din .
Then oj1(τidi1 ,...,din , vj1 , . . . , vjn) = oj1(τi(u, di1 , . . . , din), vj1 , . . . , vjn) = vji .
Meaning that the states are behaviorally equivalent.

30

3.1.2 Event Condition Action (ECA) Rules and OTS semantics

Event Condition Action rules (ECA) are one of the most commonly used
categories of reactive rules. Their syntax is: on Event if Condition do Ac-
tion, where event denotes an explicit action that changes the state of the
system, and action denotes a change in the state of the system that is caused
as a reaction to the event, if the condition part of the rule holds.

Definition 3. The concept of an ECA rule, r = On Ei if Ci do Ai,
can be transferred naturally in OTS notation. Suppose transition rules
τ : S D1 . . . Dn → S and τ ′ : S D′1 . . . D

′
k → S, that are under the effective

conditions c-τ and c-τ ′ respectively. We assume that the first rule specifies
the state change due to Ei and the second rule specifies the state change
due to Ai. We also assume that c-τ ′ corresponds to Ci. We map r to a
new transition rule in the OTS r : SD1 . . . DnD

′
1 . . . D

′
k → S. Such that

for an arbitrary state u and for all observers o that change their returned
value when τ ′ is applied we have: if o(τ ′(u, d′1, . . . , d

′
k), v1, . . . , vm) = vo

when c-τ ′(u, d′1, . . . , d
′
k), then o(r(u, d1, . . . , dn, d

′
1, . . . , d

′
k) v1, . . . , vm) = vo

when c-τ ′(τ(u, d1, . . . , dn), d′1, . . . , d
′
k) and c-τ(u , d1 , , dn). For all observers

o′ whose observations remain unaffected by the transition rule τ ′ we define;
if o′(τ(u, d1, , dn), v′1, , v

′
q) = v′o then:

o′(r(u, d1, . . . , dn, d
′
1, . . . , d

′
k)v1, . . . , vm) = v′o

if c− τ ′(τ(u, d1, . . . , dn), d′1, . . . , d
′
k) & c− τ(u, d1, . . . , dn)

This transition rule r, basically defines the sequential application of tran-
sition rules τ and τ ′.

Example 2. As an example assume the following ECA rule: “On receiving
premium notification from marketing and if regular derivable do send dis-
count to customer” [30]. We identify the following components in that rule:
The event receiving premium notification from marketing, the condition reg-
ular derivable and the action send discount to customer. By mapping the
event and action to transitions and using the appropriate observers (tables
2 and 3) we can define an OTS S corresponding to this ECA rule.

According to definition 3, we can use the previous OTS to define an OTS
S′ = 〈O′, T ′, I ′〉 that models the ECA rule as follows:

- O′ = O, where O = {customer-type, discount, product-type}

- I ′ = I, where I is the set of initial states of S

- T ′ = {t}, where t : S SenderId ClientId ProdId → S, represents
the sequential application of the transitions receive-notification and
send-discount.

31

The result of applying t to an arbitrary system state S is defined by the
following equations:

discount(t(S, I1, C1, P1)), P2, C2) = true if c-receive-notification(S, I1, C1)
∧ product-type(receive-notification(S, I1, C1), P1)) = regular ∧ (C1 = C2)
∧ (P1 = P2)

customer-type(t(S, I1, C1, P1), C2) = customer-type(receive-notification
(S, I1, C1), C2)

product-type(t(S, I1, C1, P1), P2) = product-type(S, P2)

In the equations above I1 is a variable denoting an arbitrary sender, C1,
C2 are variables denoting arbitrary clients and finally P1, P2 are variables
denoting arbitrary products.

In definition 3 however, we define a transition rule that contains, on the
effective condition, a reference to a successor state of the arbitrary system
state u, namely τ(u, d1, . . . , dn). This approach while providing clear and
intuitively straight semantics for ECA rules cannot be applied to the al-
gebraic specification languages that implement OTSs. The reason for this
is that it is not permitted to have a transition rule on the right hand side
of an equation defining another transition rule. This guarantees the termi-
nation of the rewriting procedure that is used to create proofs with such
languages. So once again we will define another (semantically equivalent)
model for the ECA rules that is more specification orientated than intu-
itively straight forward. We wish to have transitions (the events) that occur
from an outside source to the system like the typical transitions of an OTS,
but at the same time we require for our system to react to these events if
some conditions hold. We try to achieve this double goal by allowing the
systems refresh transition (read) that we defined for the production rules to
be parameterized. Also we modify the OTS, with a memory observer, so
that it remembers if in the previous state an event occurred or not. The

Table 2: Transitions of an OTS specifying a notification client discount
system
Transitions Signature Informal Definition

receive-
notification

S SenderIdClientId→ S Models the fact that a pre-
mium notification for a client
has been sent by a sender

send-
discount

S ProdIdClientId→ S Models the fact that a dis-
count for a client on a product
is granted

32

Table 3: Observers of an OTS specifying a notification client discount system
Observers Signature Informal Definition

customer-type S ClientId→ Status Returns the status of the
given client

discount S ProdIdClientId → Bool Returns true if the customer
has discount on a product

product-type S ProdId→ Type Returns the type of a product
(regular or not)

parameterization allows us to simulate the execution of events, while the
memory allows us to decide if the OTS must react to this refresh or treat it
as an incoming event.

Assume a finite set of ECA rules {ri = On Ei if Ci do Ai | i ∈ {1, . . . , n ∈
N}} and without harm of generality assume that for i 6= j;Ei, Ai 6= Ej , Aj
respectively. Also assume that for these events and actions there exist prede-
fined transition rules in an OTS say S and that the visible sorts D1, . . . , Dl

were required for their definition.

Definition 4. We define a new OTS S ′ = 〈O ′, I ′,T ′〉 modeling these rules,
where:

- O′ = O ∪ {memory}. Memory is a special observer that remembers if
an event has occurred in a state and what that event was. Since the
set of rules is finite we have a finite set of events. We can now define
the observer memory : S D1 . . . Dl → {1, . . . , n ∈ N}.

- I ′ = I.

- T ′ = {read}. Where read : S {1, . . . , n ∈ N} → S, a single parameter-
ized transition function. This according to the value of the index n ∈ N
models the transition that corresponds to event En. For an arbitrary
system state u and i ∈ {1, . . . , n ∈ N} we define that ∀o ∈ O:

o(read(u, i), d1, . . . , dl, v1, . . . , vq) = vEi if c− τi(u, d1, . . . , dl)

& (memory(u, d1, . . . , dl) = null)

This equation states that o will return the same value as it would
in S, when the transition (event) Ei had successfully occurred, if the
memory is empty. The memory is empty at the initial states and after
the occurrence of an action. In the case where the memory is not
empty we specify that this triggers a reaction from the OTS with the
following equation:

33

o(read(u, i), d1, . . . , dl, v1, . . . , vq) = vAiifc− τAi(u, d1, . . . , dl)

& (memory(u, d1, . . . , dl) = i)

This equation states that o will return the same value as it would in
S, when the transition (action) Ai had occurred successfully, if the
memory contains the index i (i.e. in the previous state of S we had
an occurrence of the event i).

Revisiting example 2, we can define the OTS S′ = 〈O′, I ′, T ′〉 according
to definition 4, as follows:

- O′ = {customer-type, discount, product-type,memory}

- T ′ = {read}

- I ′ = I

Since in this example we have one event only, we map it to index 1. So
for an arbitrary system state S the effect of read(S, 1) on S is defined by
the values returned by the observers given in the following equations:

customer-type(read(S, 1), C1) = premium if c-receive-notification(S) &
memory(S) = null.

memory(read(S, 1)) = 1 if memory(S) = null.

discount(read(S, 1), P1, C1) = true if product-type(S,C1) = regular &
memory(S) = 1.

memory(read(S, 1)) = null if memory(S) 6= null.

It is important to mention that in the case of multiple ECA rules, the
semantics of events is non-deterministic, i.e. in an arbitrary state arbitrary
events can be applied. On the other hand, actions are translated to deter-
ministic behavior.

3.1.3 Complex Events and OTS semantics

We define the semantics of a complex event algebra as an algebra for a
(timed) OTS. We chose the event algebra of [31] for reference. We will de-
fine the semantics for some standard event algebra operators. In order to
do this however we must first introduce the notion of an observer group in
a (timed) OTS.

34

Definition 5. Assuming a (timed) OTS S, we define that the transition
τ ∈ T belongs to the Observer Group og = {o1, , on} ⊆ O iff ∀o ∈ O \ og,
o(τ(u, d1, , dn), v1, . . . , vn)= o(u, v1, . . . , vn).

Now assume that in our OTS the semantics of primitive events are those
of transitions, meaning that each primitive event A, is mapped to a transi-
tion rule in the OTS. The proposed event algebra of [31] consists of the fol-
lowing complex event operators; disjunction, conjunction,negation, sequence
and temporal restriction. In the following definition we specify the seman-
tics of these operators in the OTS framework inductively.

Definition 6. Each transition rule that denotes a primitive event is a com-
plex event. Assuming complex events A and B with effective conditions cA
and cB respectively we define the following transition rules:

The disjunction transition rule A ∨B : S DA1 . . . DAnDB1 . . . DBm → S,
with effective condition cA ∨ cB. Where ∀o ∈ O:

o(A∨B(u, dA1 , . . . , dAn dB1 , . . . , dBm), vo1 , . . . , vok) = o(A(u, dA1 . . . dAn),
vo1 , . . . , vok) if cA or

o(A∨B(u, dA1 , . . . , dAn dB1 , . . . , dBm), vo1 , . . . , vok) = o(B(u, dB1 . . . dBn),
vo1 , . . . , vok) if cB.

Meaning that either event A happens or event B, but not both.

The sequence transition A;B : S DA1 . . . DAn DB1 . . . DBm → S as the
composition of transitions A and B. Such that ∀o ∈ O:

o(A;B(u, dA1 . . . dAn dB1 . . . dBm), vo1 , . . . , vok) = o(A(B(u, dA1 . . . dAn)
, dB1) . . . dBm) ,vo1 , . . . , vok).

With effective condition cA;B(S) = cB(S) ∧ cA(S′), where S′ is the suc-
cessor state of S when transition B is applied to it.

The conjunction transition rule A + B, denoting that both events oc-
cur. If the events occur simultaneously then for the system to be able to
observe them they have to belong to different observer groups. So we define
A+B : S DA1 . . . DAnDB1 . . . DBm → S, such that ∀o ∈ ogA, o ∈ ogB :

o(A + B(u, dA1 . . . dAn dB1 . . . dBm), vo1 , . . . , vok) = o(A(u, dA1 . . . dAn),
vo1 , . . . , vok) and

o(A + B(u, dA1 . . . dAn dB1 . . . dBm),vo1 , . . . , vok) = o(B(u, dB1 . . . dBn),

35

vo1 , . . . , vok).

Where ogA and ogB are the observer groups of transitions A and B
respectively. Note that ogA∩ogB = ∅. If the events do not occur simultane-
ously then A+B and B+A are equivalent to the sequential complex events
A;B and B;A, respectively.

The negation transition A-B that denotes the state where there is an
occurrence of event A while event B does not occur. Occurrence of an event
A denotes that the observers effected by transition A have the same values
as when A is applied to an arbitrary state. In this case we wish to define a
new transition rule stating that while all the observers in the observer group
of A return the same values as those returned by applying A to an arbitrary
state it is not possible for event B to occur. Since we are in a Timed OTS
(TOTS) we have two associated observers, lτ and uτ for each transition τ
denoting the lower and upper time bound of the transition rule respectively.
So it suffices to define A-B : S DA1 . . . DAn → S such that ∀o ∈ O:

o(A-B(u, dA1 . . . dAn), vo1 , . . . , vok) = o(A(u, dA1 . . . dAn), vo1 , . . . , vok) &
lB(A-B(u, dA1 . . . dAn)) =∞.

Finally, we define temporal restrictions, i.e. an occurrence of an event A
shorter than τ − time units. In the TOTS framework the effective condi-
tion of transitions tick basically forces the time to stop advancing if it will
surpass the upper bound of any transition rule. So we define the complex
event A-time : SDA1 . . . DAnR+ → S such as ∀o ∈ ogA:

o(A-time(u, dA1 . . . dAn , τ), vo1 , . . . , vok) = o(A(u, dA1 . . . dAn), vo1 , . . . , vok),

under the same effective condition as transition A.

Also for all other primitive or complex events τ that belong to the same
observer group as A, we define that:

lτ (A− time(u, dA1dAn , τ))= now(A− time(u, dA1 . . . dAn , τ)) and

uτ (A− time(u, dA1 . . . dAn , τ)) = now(A− time(u, dA1 . . . dAn , τ)) + τ .

The above equations ensure that A will no longer occur after τ -time
units, since the clock will be stopped until a transition of the same observer
group as A is applied successfully.

36

3.1.4 Knowledge Representation Rules and OTS semantics

Knowledge representation (KR) focuses on the inferences that can be made
from the fact that certain events are known to have occurred or are planned
to happen in future. Among the KR formalisms, are the Event Calculus
(EC) [32], the Situation Calculus (SC) [33], various action languages and
event logics. Here we will focus on the first two approaches.

In SC approach a set of properties of interest for the system, say {P1, . . . Pn}
is assumed. For an arbitrary system state S and an action of the system
A, it is defined that if action A occurs in situation S a new situation re-
sults (result(A,S)). In (result(A,S)) property P ∈ {P1, . . . Pn} will be true
(false) if action A in state S initiates (terminates) P . Let us also mention
here that with SC we mean the original version of McCarthy [33] and not
of R. Reiter, i.e. a situation is a state or a snapshot rather than a sequence
of actions.

Definition 7. The formalization of such a system in the OTS approach can
be done using the OTS S = 〈O, I, T 〉 where:

- T = ∪{Ai} a finite set of transitions that correspond to the finite
set of actions defined by the rules. Each such transition is defined as
Ai : SysD1 . . . Dki → Sys.

- I a set of initial states.

- O is the set of observers {initiated, terminated} ∪ {Pi}.

Where initiated : SysLabel1Label2 → Bool, terminated : SysLabel1
Label2 → Bool and Pi ∈ {P1, . . . Pn} with Pi : SysD1i . . . Dni → Bool.
Also Label1 and Label2 are predefined visible sorts that denote the actions
of the system and the properties of interest, respectively. The first observer
returns true when action A initiates property P and the second observer
returns true when action A terminates property P . This is formalized by
the following equations;

Pj(Ak(S, v1i , . . . , vni)) = true if c-Ak(S) ∧ initiated(S, pj , a) &

Pj(Ak(S, v1i , . . . , vni)) = false if c-Ak(S) ∧ terminated(S, pj , a).

Where, the constants a, pj denote an arbitrary action and a property j,
respectively, while v1i . . . vni denote arbitrary visible sorts values needed for
the definition of the transitions.

In EC approach a model of change is defined in which events happen at
time points and initiate and/or terminate time intervals over which certain
properties of the world hold. The basic idea is to state that properties are
true at particular time points if they have been initiated by an event at some

37

earlier time point and not terminated by another in the meantime.

Definition 8. This notion can be formalized in the OTS approach as well
using a TOTS S = 〈O, I, T ∪ {tickr}〉 defined as follows.

- T is the set of transitions such that T = ∪{Ai}. Where Ai : Sys→ Sys
are a finite set of transitions that correspond to the finite set of actions
defined by the rules and {tickr} is the usual advancing time transition
defined in the generic TOTS.

- I is a set of initial states.

- O the set of observers, where O = {initiated, terminated, now}∪{Pi},
where initiated, terminated and Pi are defined as in the previous defi-
nition. Also now is a special observer whose signature is now : S → R+

and denotes the system’s master clock. Finally, the equations defin-
ing the observers in an arbitrary state (adopting the same notation as
definition 7) are the following:

Pj(Ak(S, v1i , . . . , vni)) = true if ∃S′, Am such that initiated(S′, pj , am) =
true & now(S′) ≤ now(S) or

Pj(Ak(S, v1i , . . . , vni)) = true if @S′, Am such that terminated(S′, pj , am)
= true ∧ now(S′) ≤ now(S).

Also:

Pj(Ak(S)) = false if @S′′, Am such that (initiated(S′′, pj , am) = true &
now(S′′) ≤ now(S) or

Pj(Ak(S)) = false if ∃S′′, Am such that (terminated(S′′, pj , am) = true
& now(S′′) ≤ now(S).

In languages implementing OTSs quantifiers need to be treated carefully.
This is due to the fact that these languages usually relay on equational logic.
There, the ∀ quantifier can be handled by free variables, i.e. each equation
E(x) containing an unbound variable x is semantically equivalent to ∀xE(x).
On the other hand the ∃ quantifier is not straightforwardly supported. How-
ever, each equation containing an ∃ quantifier can be transformed into its
equivalent Skolem normal form without such quantifiers.

Definition 9. The equations defining the observers in the above definition,
can be replaced with the following for a language that implements an OTS.

38

Pj(Ak(S, v1i , . . . , vni)) = true if initiated(fS′(S), pj , fam(S)) = true ∧
now (fS′(S)) ≤ now(S)) or

Pj(Ak(S, v1i , . . . , vni)) = true if terminated(fS′(S), pj , fam(S)) = true
∧ now(fS′(S)) ≤ now(S)).

Also:

Pj(Ak(S)) = false if (initiated(fS′(S), pj , fam(S)) = true ∧ now(fS′(S))
≤ now(S)) or

Pj(Ak(S)) = false if (terminated(fS′(S), pj , fam(S)) = true ∧ now(fS′(S))
≤ now(S)).

Where fS′ and fam are the Skolemization functions that map each hid-
den sort to a hidden sort and each hidden sort to a label, respectively. The
formalization for EC presented here corresponds to Simplified Event Calcu-
lus (SEC), i.e. we employ time points instead of time periods. A similar
approach however could be adopted for the original EC as well.

39

3.2 An Algebraic Framework for Modeling of Reactive Rule-
based Intelligent Agents

In this section, we address the problem of formally analyzing reactive rules,
by presenting a methodology based on the OTS/CafeOBJ method that de-
fines their behavior in terms of equational transition rules. The proposed
framework offers in this way the ability to formally specify an intelligent
agent whose behavior is expressed in terms of reactive rules, to verify its
behavior and thus ensure its correctness. This is in continuation of the
previous section and of [35], where Observational Transition System (OTS)
semantics were provided for reactive rules. However here we adapt and im-
prove the proposing approach so that it can be easily used in the context of
the algebraic specification language CafeOBJ. In order to demonstrate its
effectiveness, we apply the framework to a supply chain management system
and prove security properties about the system.

Intelligent agents are a new paradigm for developing software applica-
tions. An intelligent agent is defined either as anything that can be viewed
as perceiving its environment through sensors and acting upon that envi-
ronment through effectors [36], or as a software that carries out some set of
operations and acts on behalf of a user [37], or finally as a computational
process that implements the autonomous functionality of an application [38].
Agent-based systems usually consist of many agents that communicate with
each other and are known as multi-agent systems.

The use of rule-based systems as the main reasoning model of agents
that are part of a multi-agent system has been proposed in early attempts.
In this approach each agent includes a rule engine and is able to perform
rule-based inference [39]. Thus, an intelligent agent is called rule-based, if
its behavior and its knowledge are expressed by means of rules.

The task of verifying the behavior of rule-based agents is difficult because
rules can interact during execution and this interaction can cause undesirable
results [40]. For example, one rule may trigger another rule and cause a
chain of rule triggering. Also, changes to the rule base (add, remove, change
rules) can introduce errors in the behavior of the system if the effects of the
changes are not examined beforehand. Thus, using rules in critical systems
implies that the system’s behavior must be extensively analyzed.

The proposed framework supports Event Condition Action and Produc-
tion rules. This allows proving desired safety properties about intelligent
systems whose behavior is expressed in terms of such rules. Because we
are interested in proving application specific properties, additional char-
acteristics (observers and/or transitions) about the specific system will be
required in order to specify its behavior. These characteristics will differ
from application to application and thus the specification cannot become
fully automated. This framework however will serve as the basis for spec-
ifying and verifying reactive rule based systems and most importantly for

40

capturing the semantics of their rules.

3.2.1 Production Rules in CafeOBJ

A Production rule is a statement of rule programming logic, which specifies
the execution of an action in case its conditions are satisfied, i.e. produc-
tion rules react to states changes. Recall that their essential syntax is if
Condition do Action. Some usual predefined actions supported by Rule
Markup languages are: add, retract, update knowledge and generic actions
with external effects [41].

A Production rule can be naturally expressed in our framework if we
map the action of the rule to a transition which has as effective condition
the condition of the rule. Also, since most of the actions correspond to
changes of the knowledge base in order to describe their effects we need an
observer that will observe the knowledge base (KB) at any given time. Thus,
the observer knowledge : Y → SetofBool which returns the set of boolean
elements that belong to the knowledge base is needed. For expressing the
functionalities of the KB, the following operators are required; /in which
returns true if an element belongs to the knowledge base, | which denotes
that an element is added to the KB and / which denotes that an element is
removed from the KB. Formally, the definition of a set of Production rules
as an OTS is presented below.

Definition 10. Assume the universal state space Y and the following set
of Production rules; {if Ci do Ai, i = 1, . . . , n ∈ N}, where without harm of
generality we also assume that the conditions of the rules are disjoint. We
define an OTS S = 〈O, I, T 〉 from this set of rules as follows:

- O = {O′ ∪ knowledge}

- T = {Ai}

- I = the set of initial states, such that I ⊆ Y

In the above definition, O′ denotes the rest of the system’s observers.
Transitions are the actions of the rules, Ai : Y D1 . . . Dl → Y . They can
be generic actions (with external changes) or the usual predefined actions
assert : Y Bool → Y (add a fact to KB), retract : Y Bool → Y (remove a
fact from KB), update : Y Bool Bool → Y (remove/add a fact) [42]. Facts
are denoted by boolean-sorted CafeOBJ terms. Formally, the actions of
Production rules are defined as transitions (in CafeOBJ terms) through the
following steps;

1. The effective condition of an action Ai is defined in CafeOBJ terms
as;

41

c-Ai(u,d1 ,...,dn) = Ci(d1 ,...,dn) /in knowledge(u).

2. If Ai is an assert action its effect on the knowledge observer is defined
as;

knowledge(assert(u,ki(d1 ,...,dn))) = ki(d1 ,...,dn)

|knowledge(u) if c-assert(u,ki(d1 ,...,dn)).

3. If Ai is a retract action its effect on the knowledge observer is defined
as;

knowledge(retract(u,ki(d1 ,..,dn))) = knowledge(u)

/ki(d1 ,...,dn) if c-retract(u,ki(d1 ,..,dn)).

4. If Ai is an update action its effect on the knowledge observer is defined
as;

knowledge(update(ki(d1 ,..,dn),kj(d1 ,..,dn))) = (knowledge(u)

/ki(d1 ,..,dn))|kj(d1 ,..,dn) if c-update(ki(d1 ,..,dn),kj(d1 ,

...,dn)).

5. If Ai is a generic action, we define;

knowledge(ai(u,d1 ,...,dn)) = ai(d1 ,...,dn)| knowledge(u)

if c-ai(u,d1 ,...,dn).

oi(ai(u,d1 ,...,dn)) = vi if c-ai(u,d1 ,..,dn).

Step 1 declares that an action ai can be successfully applied if the
condition of the rule holds, i.e. belongs to the knowledge base2. Step 2
states that when a transition assert(u, ki(d1, . . . , dn)) is applied successfully
in an arbitrary state u, ki is added to the knowledge base. Where ki is
the fact being asserted. In step 3 it is stated that when the transition
retract(u, ki(d1, . . . , dn)) is applied successfully in an arbitrary state u, ki is
removed from the knowledge base. When the transition update(u, ki(d1, . . . ,
dn), kj(d1, . . . , dn)) is applied successfully in an arbitrary state u, ki is re-
moved and kj is added, as step 4 defines. Step 5 states that when we have
the application of a generic action we add to our KB the information that
this action occurred. But generic actions may have side effects and in order
to describe them we may have to use additional observers oi ∈ O and define
how their values change when the action is applied successfully. Finally, if
the effective condition of a transition does not hold, the state of the sys-
tem remains the same (this is the reason we do not need to use the refresh
transition read we had introduced in [35])

2If we have negation-as-failure in the condition of the rule, i.e. if the condition cannot
be proved, this is expressed in our framework as; if ci /∈ knowledge(u), since this basically
means that there is no information (in our knowledge base) about the condition.

42

3.2.2 Event Condition Action Rules in CafeOBJ

In contrast to Production rules, Event Condition Action (ECA) rules define
an explicit event part which is separated from the conditions and actions of
the rule. Recall that their essential syntax is; on Event if Condition do Ac-
tion. The ECA paradigm states that a rule autonomously reacts to actively
or passively detected simple or complex events by evaluating a condition or
a set of conditions and by executing a reaction whenever the event happens
and the condition(s) is true [43].

In order to express ECA rules in our framework we need an observer that
will remember the occurred events. For this reason, in each event we assign
a natural number and when an event is detected its number is stored in
the observer event-memory : Y → Nat. Using event-memory we can map
events to transitions. The actions of ECA rules are assert, retract, update,
or generic actions and are mapped to transitions, as before. However, their
semantics differs as the actions of ECA rules can be applied only if their
triggering event has been detected first. Formally, the definition of a set of
ECA rules as an OTS is presented below.

Definition 11. Assume the universal state space Y and a finite set of ECA
rules {on Ei if Ci do Ai, i = 1, . . . , n ∈ N}, where without harm of generality
we also assume that for i 6= j; Ei, Ai, Ci 6= Ej , Aj , Cj , respectively. The OTS
S = 〈O, I, T 〉 modeling these rules is defined as:

- O = {O′ ∪ knowledge, event−memory}

- T = {Ei, Ai}

- I = the set of initial states such that I ⊆ Y

Here, O′ is the same as in definition 10. Transitions are the events,
Ei : Y D1 . . . Dn → Y and the actions, Ai : Y D1 . . . Dn → Y . Formally, the
rule on Ei if Ci do Ai is defined in CafeOBJ terms through the following
steps:

1. The effective condition of an event Ei is denoted as c-ei(u, d1, . . . , dn)
and states the conditions under which the system is able to detect the
event.

2. The effects of the application of the event Ei in an arbitrary system
state u are the following;

knowledge(Ei(u,d1 ,...,dn)) = ei(d1 ,...,dn)| knowledge(u) if

c-ei(u,d1 ,...,dn) and event-memory(u) = null .

event-memory(Ei(u,d1 ,...,dn)) = i if c-ei(u,d1 ,...,dn) and

event-memory(u) = null .

43

3. The effective condition of the action Ai, is defined as;

c-Ai(u,d1 ,...,dn) = Ci(d1 ,...,dn) /in knowledge(u) and

ei(d1 ,...,dn) /in knowledge(u).

4. The effects of the action Ai, if it is an assert action, are described
through the following equations;

knowledge(assert(u,ki(d1 ,..,dn))) = ki(d1 ,..,dn)| knowledge

(u)/ei(d1 ,...,dn) if c-assert(u,ki(d1 ,...,dn)).

event-memory ((u,ki(d1 ,...,dn))) = null if c-assert(u,ki(d1

,...,dn)).

The effects of the rest of the actions are defined in a similar way. Step 2
states that when the transition/event Ei is applied, the name of the occurred
event (ei) is added to the knowledge base as a fact if in the previous state
the detection conditions of the event were true and event-memory was null
(denoting that no events had occurred). Also, when the event is applied,
event-memory stores the identification number of the event (here i). Step
3 declares that the action will be applied successfully, if the condition of
the rule belongs to the KB and the triggering event of the action has been
detected. In step 4 it is stated that when the action assert(u, ki(d1, . . . , dn))
is applied, the fact ki is added to the knowledge base and its triggering event
is consumed, i.e. its name is removed from the knowledge observer. Also,
event-memory becomes null.

We must mention here that as we will see in the following section, some-
times the names of the events are not removed from the observer event-
memory if they are required for the detection of complex events. Also, if
many rules (either Production or ECA) can be executed at the same time,
a selection function is used from the inference engine of the system such
as those presented in [44, 45]. It is quite straightforward to include this
characteristic in our framework but is out of the scope of this chapter.

One of the challenges we met while expressing these rules into our frame-
work was the difference between events and actions, i.e. while events can
occur at anytime and can be straightforwardly mapped to transitions, ac-
tions must be executed after the detection of their triggering events. To
capture this difference we used the observer event-memory. Initially it re-
turns the value null (meaning that no events have been detected) denoting
that any event can occur, but when an event is detected then the only ap-
plicable transition in the system is the action of the detected event.

3.2.3 Complex Events and CafeOBJ

Sometimes ECA rules react to the detection of complex events. Complex
events are created by primitive event(s) and event operator(s). A typical

44

set of event operators for defining complex events include the following;
xor (mutually exclusive), disjunction (or), conjunction (and), any, concur-
rent (parallel), sequence (ordered), aperiodic, periodic. In [44] definitions of
such operators are presented in more details. In this section we will present
how the basic event operators can be expressed in our framework.

Definition 12. Assume primitive events Ai and Bj defined as transi-
tions with effective conditions c-Ai and c-Bj respectively. Complex event
xor(Ai,Bj) means that either event Ai happens or Bj, but not both. The
application of the complex event/transition ek : xor(u,Ai,Bj) to an arbi-
trary system state is defined as:

knowledge(xor(u,Ai ,Bj)) = xor(Ai ,Bj)| knowledge(u) if Ai /in

knowledge(u) xor Bj /in knowledge(u) .

event-memory(xor(u,Ai ,Bj)) = k if Ai /in knowledge(u) xor Bj

/in knowledge(u) .

The above equations state that the complex event is detected (its occur-
rence is added to the KB) if its detection conditions are fulfilled, i.e. if we
have detected either the primitive event Ai or event Bj. Also, the observer
event-memory stores the id number k of the event (where xor is a built-in
operator) if the same conditions hold.

Disjunction(Ai,Bj) means that either event Ai happens or Bj (or
both). In a similar way, the application of the event disjunction(u,Ai,Bj)
is defined as;

knowledge(disjunction(u,Ai ,Bj)) = disjunction(Ai ,Bj)|

knowledge(u) if Ai /in knowledge(u) or Bj /in knowledge(u).

Conjunction(Ai,Bj) means that both events Ai and Bj occur in any
order. The application of the event conjunction(u,Ai,Bj) is defined as;

knowledge(conjuction(u,Ai ,Bj)) = conjuction(Ai ,Bj)| knowledge(u)

if Ai /in knowledge(u) and Bj /in knowledge(u).

Sequence(Ai,Bj) corresponds to the ordered execution of events Ai and
Bj. The application of sequence(u,Ai,Bj) is defined as;

knowledge(Bj(u)) = sequence(Ai ,Bj)| knowledge(u)

if Ai /in knowledge(u) and event-memory(u) = i.

This complex event is detected (its occurrence is added to KB) during
the occurrence of event Bj, which can occur if in the previous state Ai had
occurred, i.e. event-memory had stored i (and not if the memory is equal
to null).

By using the observer event-memory and declaring which event had oc-
curred before we can avoid the unintended semantics these operators can
have, which are caused because the events, in the active database sense, are
treated as if they occur at an atomic instant. This problem is discussed

45

in [45, 46] where also a solution is proposed by defining an interval-based
effect semantics in terms of an interval-based event calculus formalization.
The alternative interval-based semantics could be implemented in our frame-
work by extending the definition of an event with the time of its occurrence
and introducing the notions of event and time intervals.

The rest event operators (concurrent, aperiodic and periodic), which are
used less often, cannot be straightforwardly expressed in our framework and
an extension is required in order to include them as well.

3.2.4 A Supply Chain Management System

To demonstrate the expressiveness of our framework we applied it to an in-
dustrial case study that uses Event Condition Action rules to control the ac-
tivities of its agents. These activities are inter-enterprise business processes
and thus their verification is an important task. In [47] authors present an
integrated work flow-supported supply chain management system that was
developed so that Nanjing Jin Cheng Motorcycle Corporation in China and
its suppliers could handle better their inner processes.

In the next figure a part of the inter-enterprise business process occur-
ring in the supply chain is presented and more precisely the activities of
the manufacturer agent. S and E are dummy activities that represent the
start and end of the process, respectively. The arrowed edge represents the
execution direction. The labels Ri (i = 1, . . . , 8) denote the corresponding
ECA rules that are used to control the route of activities.

This business process consists of the following steps:

1. After the sales department accepts an order from a customer, a charge
activity is initiated to wait for payment from the customer.

2. When the payment of the order is received and if it covers the total
cost, the query inventory activity starts to check if the inventory level
is enough to satisfy the order.

(a) If it is enough, the deliver goods activity is initiated and the
inventory level is adjusted by the inventory agent.

(b) If it is not enough, the manufacture plan activity is activated that
checks if there is enough material to produce goods.

i. If there is enough material, a manufacturing plan is created
by the product plan agent and then the manufacture activity
starts.

ii. If there is not enough material, a list of materials shortage
is sent to the outsourcing agent, and an outsource activity
is initiated. After the materials purchased from the supplier
arrive, the manufacture activity is activated.

46

Figure 3: Representation of an inter-enterprise business process

3. When the products for the order have been produced, the deliver goods
activity starts to ship goods to the customer.

4. The process is completed when the goods are delivered to the customer.

The inter-enterprise work flow model is based on a nested sub-processes
model. In this, the originating process instance starts a sub process in
a work flow enactment service and waits for a return message during its
execution. The originating process chooses the sub-process according to its
goal, requiring only the sub process to fulfill this goal and return results.
With the support of this model, it is convenient to adjust the business
process according to different requirements.

It can be easily adjusted by modifying some of the ECA rules and no code
needs to be modified [47]. In this case, our framework due to its modularized
structure can be used to verify the design of the adjusted model i.e. ensure
that the system meets its new requirements, with minor changes in the initial
specifications.

The proposed system consists of a set of business function agents whose
tasks are to deal with outsourcing, production planning, sales, customer
service, inventory, and so on. Each agent is an autonomic and independent
entity. ECA rules are used to control the execution sequence of agents’
activities. These rules are presented in the following table.

Rules R1-R8 were expressed in our framework according to the previous
definitions. For example, the first rule was defined in CafeOBJ using the
transitions endsales and stcharge. The first transition represents the event
part of the rule and the second the action. The definition of the transition
endsales can be seen below:

c-endsales : Sys department customer Nat -> Bool

c-endsales(S,Sales ,C,N) = (order(S,Sales ,C) = N) and

(event-memory(S) = null).

knowledge(endsales(S,Sales ,C,N)) = (endsales|knowledge(S))

if c-endsales(S,Sales ,C,N).

47

Table 4: ECA rules controlling the activities of the manufacturer

R1 On end(sales) R5 On end(ManufacturePlan)
Do st(charge) if isMaterialsEnough

R2 On end(sales) and end(charge) Do st(Manufacture)
if payment > totalprice R6 On end(ManufacturePlan)
Do st(QueryInventory) if not isMaterialsEnough

R3 On end(queryinventory) Do st(Outsource)
if IsGoodsEnough R7 On end(Outsource)
Do st(DeliverGoods) if ArrivedMaterials

R4 On end(queryinventory) Do st(Manufacture)
if not IsGoodsEnough R8 On end(Manufacture)
Do st(ManufacturePlan) Do st(DeliverGoods)

event-memory(endsales(S,Sales ,C,N)) = 1 if c-endsales(S,Sales ,

C,N).

The effective condition c-endsales denotes that the event endsales can
be detected when the sales department receives an order from a customer
and if no other event had been detected in the previous state. The observer
order returns the cost of the order a department receives from a customer.
When the event is successfully detected its name enters the knowledge base
and event-memory stores its identification number. The transition stcharge
is defined as follows:

c-stcharge : Sys Nat customer -> Bool

c-stcharge(S,N,C1) = (endsales /in knowledge(S)) and

(event-memory(S) = 1).

event-memory(stcharge(S,N,C1)) = null if c-stcharge(S,N,C1).

knowledge(stcharge(S,N,C1)) = knowledge(S).

payment(stcharge(S,N,C1),C2) = pending if c-stcharge(S,N,C1)

and (C1 = C2).

The effective condition c-stcharge denotes that the action stcharge will
occur if the event endsales belongs to the KB and event memory contains
the id number of the event. After the execution of the action, the observer
event-memory becomes null, knowledge base stays the same (because the oc-
currence of endsales event is needed for the detection of the complex event
end(sales) and end(charge) of R2) and the payment of the customer is pend-
ing until a receipt is received. The sixth rule was defined in CafeOBJ using
the transitions stoutsource and endmanufactureplan. The definition of the
transition endmanufactureplan is presented below;

c-endmanufactureplan : Sys bill inventory -> Bool

48

c-endmanufactureplan(S,B,I) = (materials(S,B,I) = computed)

and (event-memory(S) = null).

knowledge(endmanufactureplan(S,B,I)) = (endmanufactureplan|

knowledge(S)) if c-endmanufactureplan(S,B,I).

event-memory(endmanufactureplan(S,B,I)) = 5 if

c-endmanufactureplan (S,B,I).

The effective condition c-endmanufactureplan denotes that the event
can be detected when it is computed if there are enough materials to produce
goods for the order and if event-memory is null. When the event is detected
the name of the event enters the knowledge base and the observer event-
memory stores the number of the event, i.e. 5. The transition stoutsource
is defined as follows;

-- stoutsource

c-stoutsource : Sys bill inventory agent -> Bool

c-stoutsource(S,B,I,A) = endmanufactureplan /in knowledge(S)

and (event-memory(S) = 5) and (materials(S,B,I) < enough) .

knowledge(stoutsource(S,B,I,A)) = (knowledge(S)/

endmanufactureplan) if c-stoutsource(S,B,I,A) .

event-memory(stoutsource(S,B,I,A)) = null if

c-stoutsource(S,B,I,A) .

list(stoutsource(S,B,I,A),A) = true if

c-stoutsource(S,B,I,A) .

The effective condition c-stoutsource declares that the action can be
successfully applied if the event endmanufactureplan has been detected and
the condition of the action holds, i.e. the materials are not enough. When
the action occurs, the observer event-memory becomes null, the occurrence
of the event is removed from the knowledge base and a list is sent to the
outsourcing agent.

In a similar way we expressed all the rules in our framework. We also
defined the transitions whose occurrence makes the detection conditions of
the events true. For example, in order to detect the event endmanufacture,
the products for the order must have been produced. Thus, we defined the
transition produceproducts. When this transition is successfully applied,
the value of the observer products becomes ”produced”, indicating that the
event endmanufacture can be detected;

products(produceproducts(S)) = produced if c-produceproducts(S) .

In the above case study, the events may seem as simple propositional
representations, or similar in format, but in the context of the whole specifi-
cation they fully express the functionalities of the system. In order to specify
this manufacturer agent, 18 transitions (12 that correspond to events and
actions and 6 external transitions) and 14 observers were needed.

49

The most important feature of the proposed framework is the ability to
verify the behavior of reactive rule-based intelligent agents using the proof
score methodology, we have described in details in previous sections.

The type of properties that can be proved with the framework are safety
properties, that hold in any reachable state of the system (called invari-
ant properties), and liveness properties, which denote that something will
eventually happen. For the supply chain system of the previous section, we
proved that the process of delivering the goods to the customer must not
be activated if the payment of the customer does not cover the total cost of
the order. This is an invariant property, important for the purpose of the
system. Invariant 1, is defined in CafeOBJ terms as;

inv1(S,C) = not(not(payment(S,C) >= cost(S,C)) and (delivered(S,

C) = true)).

At this point, we would like to mention some interesting points of the
proof of this invariant. In the inductive step of invariant 1, CafeOBJ could
not reduce the effective condition to either true or false for the transition
stdelivergoods, and we had to split the cases as shown below;

open ISTEP

eq c-stdelivergoods(s,n1,i,c1) = false .

eq s’ = stdelivergoods(s,n1,i,c1) .

red istep1 .

close

open ISTEP

eq c-stdelivergoods(s,n1,i,c1) = true .

eq s’ = stdelivergoods(s,n1,i,c1) .

red istep1 .

close

Also the case denoted by the following equations returned false, for the
transition stcharge. It was easy to understand that not all of the above
equations could hold simultaneously in our system, and thus we used the
invariant 2 to discard it (and CafeOBJ then returned true).

open ISTEP

-- eq c-stcharge(s,n1,c1) = true .

eq (endsales /in knowledge(s)) = true .

eq event-memory(s) = 1 .

eq c = c1 .

eq (payment(s,c1) >= cost(s,c1)) = true .

eq s’ = stcharge(s,n1,c1) .

red inv2(s,c1) implies istep1 .

close

inv2(S,C) = not((event-memory(S) = 1) and

(payment(S,C) >= cost(S,C))).

inv3(S,C) = not((event-memory(S) = 3) and

not(payment(S,C) >= cost(S,C))).

50

Finally, invariant 3 was needed for the transition stdelivergoods. Fol-
lowing the proof scores method we successfully verified invariant 1 and the
two lemmas that were needed to conclude the proof. The full specification
and the proofs can be found at [48].

In order to compare the proposed framework with other similar ap-
proaches we first give a brief description of the related work. A lot of re-
search concerning analysis of rule-based systems exists in the area of active
databases. For example, in [49] authors present an overview of processing
rules in production systems, deductive and active databases. A larger sur-
vey on the different approaches of reaction rules can be found in [50]. Most
of the approaches addressing formal analysis of such systems however deal
with checking properties such as termination, confluence and completeness.
One such attempt to verify rule-based systems can be found in [51], where
authors use Petri-nets to analyze various types of structure errors such as
inconsistency, incompleteness, redundancy and circularity of rules. Also,
ECA-LP [45] which is based on a labeled transaction logic semantics, sup-
ports state based knowledge updates including a test case based verification
and validation for transactional updates.

Few papers targeting the verification of the behavior of active rule-based
systems/agents exist. More precisely, in [52] authors describe a reasoning
framework for Ambient Intelligence that uses the Event Calculus formalism
for reasoning about actions and causality. Also, an approach to verify the
behavior of Event-Condition-Action rules is presented in [40] where a tool
that transforms such rules to timed automata is developed. Then the Uppaal
tool is used to prove desired properties for a rule-based application. This
last work is the closest to ours with the difference that in [40] authors use
model checking, while our approach uses theorem proving techniques.

The proposed framework focuses on verifying the behavior of rule-based
agents, rather than proving correctness properties or handling problems with
negations, mainly for two reasons; first, the verification of such properties
has been studied in many other approaches [51] and second the OTS/-
CafeOBJ method does not study properties about the transitions of the
system but analyzes their effects in the system’s behavior. We believe that
our framework has the following advantages over existing approaches; it can
be used for the verification of complex systems due to the simplicity of the
CafeOBJ language and its natural affinity for abstraction. Also, it has the
ability to specify systems with infinite states (in contrast with approaches
that use model-checking techniques) and it allows the re usability not only
of the specification code but also of the proofs [26].

51

3.3 On Verifying Reactive Rules Using Rewriting Logic

In the previous sections we presented some first steps to use algebraic spec-
ification techniques in the area of reactive rules and more precisely, we pro-
posed the use of OTS/CafeOBJ method to prove safety properties about
reactive rule-based systems. We gave an Observational Transition Sys-
tem (OTS) semantics to Production and Event Condition Action rules so
that verification of reactive rules can be supported. OTSs are described as
equational theory specifications in CafeOBJ and the OTS/CafeOBJ method
([23,24]) is then used to theorem prove that systems (formalized as OTSs)
have desired properties. This approach has been effectively used for the
specification of various complex systems [53] and the verification of invari-
ant and liveness [54] properties of them.

The methodology proposed in the previous section and in [55] however
cannot express naturally structure properties about reactive rules, such as
confluence and termination. To this end, in this section we extend the
previous approach by adopting a different logical formalism, so that the
behavior of reactive rules can be formally analyzed in a seamless manner.

The extended framework can be used to; (1) formally specify reactive
rules, (2) detect structure errors, like confluence and termination, and (3)
prove invariant safety properties of the specified reactive rule based system,
via theorem proving and model checking techniques. This diversity of op-
tions to verification (techniques and properties) offered by the resulted form
of the reactive rules and the underlying logic, consists the main contribution
of our work.

The properties of interest to rule systems verification include both safety
properties and structure properties, such as confluence and termination of
the rules. These properties are briefly described below;

A safety property is an assertion that a desirable property holds in all
reachable states (i.e. is an invariant) of the rule-based system and is specific
to the purpose of the specified application. Confluence concerns whether the
result of executing a set of triggered rules depends on the execution order
of the rules or not. A rule program is considered confluent in other words
when from any initial state, all program executions lead to the same final
state. Termination analysis aims to ensure that a set of rules will eventually
terminate (i.e. reach a final state) and will not continue to trigger each other
infinitely. A system may never terminate due to circular triggering of rules
for example.

The behavior of rule based systems depends on their operational se-
mantics. These are determined through the semantics of a rule execution
procedure, which is usually called rule engine. A rule engine that executes
production rules, consists of the following steps [56]:

1. Set the working memory to the initial state.

52

2. Build the set of all applicable and eligible rules. This set is called the
agenda of the rule engine.

3. If the agenda is empty, the execution ends.

4. Otherwise, use a conflict set resolution strategy and choose a rule r in
the agenda.

5. Update the working memory by executing the action of r. If the rule
action contains several assignments, execute them in sequence.

6. Go to step 2.

The purpose of the rule eligibility strategy (step 2) is to avoid trivial
infinite loops caused by applying again and again the same rule. It defines
what a trivial loop is, and avoids them by making some rules ineligible. The
purpose of the conflict set resolution strategy (step 3) is to pick the next rule
to execute from the agenda. Again, several such strategies exist. Assigning
a priority to each rule is a commonly used strategy.

Commercial engines employ such strategies to support logging execution
traces, to provide simulation capabilities, and finally test and debug a rule
set. For example, the problem of confluence can be solved by using priori-
ties. It has been argued however that using this approach can be iterative
since after prioritizing rules, say r1 and r2, a new pair of rules causing non-
confluence may be identified [40]. The problem of termination can be solved
by not allowing rules to trigger each other. However, this can reduce the
usefulness of the language [40].

Even though most engines provide the support described above, they
also present the discussed downsides and in addition they do not permit
reasoning about the rule based system. We believe that formal methods can
provide a feasible solution to this problem complementing the existing tools.

3.3.1 Reactive rules and CafeOBJ

We present here how reactive rules can be formally defined as a set of rewrite
theory specifications in CafeOBJ. Recall that in a rewrite theory, states
can be expressed as tuples of values < a1, a2, b1, b2 > or as collections of
observable values (o1[p1] : a1)(o1[p2] : a2)(o2[p1] : b1)(o2[p2] : b2) (soups),
where observable values are pairs of (parameterized) names and values.

The main difference between the two expressions is the following; when
the states are expressed as tuples, the state expressions must be explicitly
described on both sides of each transition. But when expressing states as
soups, only the observable values that are involved in the transitions need
to be described on both sides of each transition.

By adapting the definition presented in [55], here we define a set of re-
active rules as rewrite theory specifications of OTSs expressed as collections

53

of observable values as follows;

Definition 13. A production rule is expressed as a term of the form Ri
= On Ci do Ai where Ai can either denote a variable assignment, or an
assertion, retraction, update of the knowledge base (add/remove/update
facts from the KB respectively) or some other generic action with side effects.
In the case where Ai denotes a variable assignment this is expressed by a
transition rule of the form:

ctrans [Ri] (V: v0) D => (V: v1) D if Ci = true.

Where, Ri is the label of the transition rule and v0, v1 are variables.
Also, the keyword ctrans is used because the rule is conditional. The above
rule states that the observable value V will become v1 if the condition of the
rule is true. Also, D denotes an arbitrary data type needed for the definition
of the transition. When the result of action Ai is the assertion of the fact
ki to the knowledge base, its definition is the following;

ctrans [assert ki] (knowledge: K) D => (knowledge: (ki U K) D

if Ci /in K.

In the above rewrite rule knowledge is the observable value corresponding
to the knowledge base and it is defined as a set of boolean elements, as
before. When the result of action Ai is the retraction of the fact ki from the
knowledge base, its definition is;

ctrans [retract ki] (knowledge: K) D => (knowledge: K / ki) D

if Ci /in K.

When action Ai is an update action, its definition is the following;

ctrans [retract ki] (knowledge: K) => (knowledge: (K / ki) U kj)

if Ci /in K.

Finally, if Ai is a generic action and extra observable values (oi) need to
be used for its definition, we have;

ctrans [ai] (oi: vi) D => (oi: vj) D if Ci = true.

In order to express ECA rules as rewrite rules we use the definition below;

Definition 14. An Event Condition Action rule of the form Ri := On Ei
if Ci do Ai is defined in CafeOBJ terms as two transitions.

The first one specifies the event Ei and in particular the fact that the
system after the detection of the event it stores its identification number in
the observable value event-memory. This is defined as;

ctrans [Ei] (event-memory: null) => (event-memory: i) if c-ei

= true.

In the above rewrite rule, the value null of event-memory, denotes that
no other event is detected at the pre state and c-ei is a boolean CafeOBJ
term denoting the detection conditions for Ei.

54

The second transition rule specifies the action Ai. More precisely it
defines that the system must respond to the detected event by performing
the corresponding action, where Ai is again either a generic action or a
predefined action of the rule language. The triggering of the action as a
response to the event is simply defined by adding the condition that in the
pre state the event memory will contain the index of the occurred event, i.e.

ctrans [ai] (event-memory: m) (oi: vi) => (event-memory: null)

(oi: vj) if Ci = true and (m = i).

This ensures that only the guard of this transition rule will hold at the
pre state and thus this will be the only applicable transition for that state
of the system. Also after the occurrence of the action, event-memory will
become null again denoting that the system is ready to detect another event.

Let us note here that in cases where the action of the rule may activate
an internal event (say Ej), the observable value stores the id of the event, j,
and becomes null again when the corresponding to the internal event action
is applied (if it does not activate another internal event).

3.3.2 Running example.

We use as a running example a company’s e-commerce web site [56] in
order to explain better the definitions presented before. This company has
customers with registered profiles on the site, which contain information
about the customers’ age and their category (Silver, Gold, or Platinum).
When a customer puts items in his/her shopping cart a discount is computed
based on the pricing policy of the company, i.e. on the customer’s profile
and the value of the cart. The behavior of this system is defined by the
following three production rules;

1. The gold-discount rule implements a policy that increments the dis-
count granted to Gold customers by 10 points, if their shopping cart
is worth 2,000 or more.

2. The platinum-discount rule implements a policy that increments the
discount granted to Platinum customers by 15 points, if their shopping
cart is worth 1,000 or more.

3. The upgrade rule implements a policy that promotes Gold customers
to the Platinum category, if they are aged 60 or more.

These rules can be written as a set of rewrite transition rules in CafeOBJ
according to definition 13. First, the state of our system is formally described
in the module below;

mod! State {

pr(Type + Nat)

[Obs < State]

55

-- configuration

op void : -> State {constr}

op _ _ : State State -> State {constr assoc comm id: void}

-- observable values

op category:_ : type -> Obs {constr}

op value:_ : Nat -> Obs {constr}

op age:_ : Nat -> Obs {constr}

op discount:_ : Nat -> Obs {constr} }

As we can see a state is defined as a set of the following observable
values (category :)(value :)(age :)(discount :). The three last values are
represented by natural numbers and for this reason the module imports
the predefined module Nat. Also pr(Type) imports a previously defined
CafeOBJ theory which specifies the various customer types, i.e. gold, plat-
inum and silver. Next, the rules R1-R3 are defined as a rewrite theory:

ctrans [gold] : (category: G) (value: V) (discount: M)

=> (category: G) (value: V) (discount: (M + 10))

if ((V >= 2000) and (G = gold)).

ctrans [platinum] : (category: G) (value: V) (discount: M)

=> (category: G) (value: V) (discount: (M + 15))

if ((V >= 1000) and (G = platinum)).

ctrans [upgrade] : (category: G) (age: N) (discount: M)

=> (category: platinum) (age: N) (discount: M)

if (G = gold) and (N >= 60).

The gold rewrite rule, states that if the observable value category is gold
and the value is equal or greater than 2000 then the value discount will
be increased by 10 points. The platinum rewrite rule, states that if the
observable value category is platinum and the value is equal or greater than
1000 then the value discount will be increased by 15 points. The upgrade
rewrite rule states that if the observable value category is gold and the age
is 60 or more then the value category will become platinum.

As discussed in [56], there is an ambiguity between the upgrade and
discount rule. If a gold customer is eligible to both being granted the gold
discount and being upgraded to the platinum category, then this customer
may end up with either a 15 or 25 per cent discount, depending on the exe-
cution order of the rules. This can be a hazard for the business application
implementing this set of rules. We will present how such structural errors
can be detected using our approach.

In particular, in this section we define some CafeOBJ operators which
allow us to reason about confluence and termination properties of reactive
rule based systems specified as rewrite logic theories. Also we demonstrate
how existing operators can be used together with the proposed formalization
of reactive rules to verify invariant properties about them.

56

3.3.3 Proving termination properties

Termination in a rule based system concerns with the existence of a state of
that system where no more rules are applicable. More precisely;

Definition 15. A rule program’s state s is terminating if and only if there
is no infinite sequence s → s1 → s2 → ... In other words a state s is
terminating if it leads to a state where no rules can be applied. That is,
there exist two states such that; s → s′ and ¬(s = s′) where s′ is a final
state. Based on this, we can check if a state terminates by defining the
following predicate in CafeOBJ terms;

op terminates? : State -> Bool

terminates ?(s) = s =(1,*)=>! (o1: v1) (o1: v2)

red terminates ?(s) .

The expression t1 = (1, ∗) => !t2 indicates that the term matching to
t2 should be a different term from t1 to which no transition rules are ap-
plicable. Also, the term (o1 : v1)(o1 : v2) represents an arbitrary state and
it depends on the observable values of the specified system. By reducing
the above predicate, we ask CafeOBJ to find a a final state reachable from
the state s. If true is returned (together with a final state) it means that
the state s is terminating; if false is returned it means that in the state
s, no transition can be applied. Finally, the CafeOBJ reduction may not
terminate, indicating that s is not terminating. Using the above predicate,
we can check if the whole rule based system terminates or not, by defining
the search to be performed for the initial state of the system;

op init : -> State

red terminates ?(init).

When the number of reachable states reachable from init is small enough,
the whole reachable state space can be checked by, init = (1, ∗) =>, where ∗
denotes infinity. Otherwise, the bounded reachable state space whose depth
is d may be checked by, init = (1, d) =>.

Here we test the set of rules of the running example for termination. We
must mention that in most real life applications the initial state of the system
is explicitly defined during the design of the system. An e-shop site for
example before the implementation could have the following characteristics;
initially, no customer is registered at the site, when someone registers for
the first time his/her category is silver, the discount is zero and so on.

It is possible however, for a system to be defined without explicitly defin-
ing its initial state. In such cases, we can still check the desired properties
(confluence and termination) by defining an arbitrary initial state and then
discriminate the cases based on the conditions of the transition rules3. Here

3 In our example these cases are; (age < 60 or age >= 60), (discount = gold or discount

57

we present the most indicative cases of the running example;

-- case (a)

open RULES .

op s : -> State .

eq s = (category: gold) (value: 500) (age: 50) (discount: 0)

red terminates ?(s) .

In this case CafeOBJ returns false and the following message, which is
reasonable since no transition can be applied.

** No more possible transitions.

(false): Bool

-- case (b)

eq s = (category: gold) (value: 500) (age: 60) (discount: 0)

red terminates ?(s) .

In this case where upgrade is the only applicable rule the CafeOBJ sys-
tem returns true and the final state (category : platinum)(value : 500)(age :
50)(discount : 0).

-- case (c)

eq s = (category: gold) (value: 2000) (age: 50) (discount: 0)

red terminates ?(s) .

In this case the gold rule can be applied to s and to all reachable states
from s. Thus in CafeOBJ the above reduction does not halt indicating
that this initial state is not terminating. The same conclusion holds for the
platinum rule as well.

Having detected this issue we can correct the rule base by adding con-
straints to the application of these rules, for example (discount : (M1 +
10) <= 100) and (discount : (M1 + 10) <= 100) respectively, since the
discount cannot surpass this value. In this way the rules will stop trigger-
ing when the discount reaches the maximum value. When the same case
is tested after adding the above constraints CafeOBJ finds the final state;
(category : gold)(value : 2000)(age : 50)(discount : 100).

3.3.4 Proving confluence properties

Once a rule based system has been checked for termination, it is important
to be able to determine if it is confluent or not (if the rules do not terminate
they will not be confluent either).

Definition 15. A rule program’s state s is non-confluent if there exist two
traces trace1 and trace2 from this state that lead to distinct states. That is,

there exist two traces and three states such that; s
trace1−→ s1 and s

trace2−→ s2

= platinum), (value < 1000 or value >= 1000) and (value < 2000 or value >= 2000). For
the last two only the following (value < 1000 or 1000 <= value < 2000 or value >= 2000)
need to be checked.

58

and ¬(s1 = s2), where s1 and s2 are final states. Based on this, we can check
a state for non-confluence by defining the following predicate in CafeOBJ
terms;

op notConfulent? : State -> Bool

notConfluent ?(s) =(2,*)=>! (o1: v1) (o2: v2) .

red notConfluent ?(s) .

The above reduction i.e. asks CafeOBJ to search if it can find starting
from an arbitrary state s two different final states of the system. For this
reason we use again the predicate with the exclamation mark at the end
(final state) but in the number indicating the number of solutions we assign
the value two (two different states). If two such solutions are found it means
that the state s is not confluent. Otherwise if false is returned and one
solution is found, the state is confluent. To check a rule based system for
confluence we perform the search for the initial state of the system, as before,
using the command:

red notConfluent ?(init).

Here we test the set of rules of the running example for confluence. Again
we can discriminate the cases for an arbitrary initial state. For example:

-- case (a)

open RULES .

op s : -> State .

eq s = (category: gold) (value: 500) (age: 60) (discount: 0)

red notConfluent ?(s) .

In the above case where upgrade is the only applicable rule CafeOBJ
returns false, as it finds one final state meaning that the state s is confluent.
Now let us consider the state which is defined by the following observable
values; the value of the items of the cart is equal to 2000 dollars, the age
of the customer is 60 years old and her/his category is gold. This is the
state we mentioned at the beginning of the section, in which the customer
is eligible to both being granted the gold discount and being upgraded to
the platinum category.

-- case (b)

eq s = (category: gold) (value: 2000) (age: 60) (discount: 0)

red notConfluent ?(s) .

CafeOBJ returns true as it finds two solutions, denoting that s is not
confluent as we expected. In particular it returns;

** Found [state 25] (category: platinum) (value: 2000) (age:

60) (discount: 90)

** Found [state 27] (category: platinum) (value: 2000) (age:

60) (discount: 95)

Using the command show path id we can see the two transition paths
that cause the problem (and then we can add constraints in the conditions
of the rules as before to solve this issue by letting for example the upgrade

59

rule to be applied first). Even though the presented example is quite simple
it demonstrates that detecting such errors before the implementation of a
rule based system can prove really helpful especially when designing complex
critical systems.

3.3.5 Proving safety properties

The built-in CafeOBJ search predicate can also be used to prove safety
properties for a system specified in rewriting logic (RWL). In this work, we
are interested in invariant properties. For the verification of such properties
model checking and/or theorem proving can be used; An invariant property
can be model checked by searching if there is a state reachable from the
initial state such that the desirable property does not hold [20]. This can
be achieved using the following expression:

red init =(1,*)=>* p [suchThat c] .

In the above term c is a CafeOBJ term denoting the negation of the
desired safety property. Thus, CafeOBJ will return true for this reduction
if it discovers (within the given depth) a state which violates the safety
property. This methodology is very effective for discovering (shallow) coun-
terexamples. However, model checking does not constitute a formal proof
and is complementary to theorem proving. Formal proofs are required when
we are dealing with critical systems. In [20] a methodology to (theorem)
prove safety properties of OTS specifications written in RWL is presented.
This methodology can be used to reason about rule based systems expressed
in our framework as we will demonstrate throughout the running example.
For our rule based system an invariant safety property could be the follow-
ing; a customer cannot belong to the platinum category if his/her age is less
than 60 years. This is expressed in CafeOBJ terms as;

isSafe : State -> Bool .

isSafe ((category: G) (value: V) (age: N) (discount: M)) = not

((G == platinum) and (N < 60)) .

The proof is done by induction on the number of transition rules of the
system. First, the following operator is used [20];

vars pre con : Bool

check : Bool Bool -> Bool

check(pre , con) = if (pre implies con) == true then true

else false fi.

This operator takes as input a conjunction of lemmas and/or induction
hypotheses and a formula to prove and returns true if the proof is successful
and false if pre implies con does not reduce to true (this is why the built
in == CafeOBJ operation is used, which is reduced to false iff the left and
right hand side arguments are not reduced to the same term). Using this
predicate the base case of the proof is successfully discharged using the
following CafeOBJ code:

60

init = (category: gold) (value: 2000) (age: 50) (discount: 0).

red check(true , isSafe(init)).

The inductive step consists of checking whether from an arbitrary state,
say s, we can reach in one step a state, say s′, where the desired property
does not hold. This can be verified using the following reduction [20]:

red s =(*, 1)=>+ s’ suchThat (not check(isSafe(s),isSafe(s’))).

In the case where CafeOBJ returns false it means that it was unable to
find a state s′ such that the safety property holds in s and it does not hold
i s′4. If a solution is found, i.e. the above term is reduced to true, then
either the safety property is not preserved by the inductive step or we must
provide additional input to the CafeOBJ machine. In the second case this
input may be either in the form of extra equations defining case analysis
or by asserting a lemma (in which case the new lemma has to be verified
separately). Consider the inductive step where the gold transition rule is
applied to s.

s = (category: gold) (value: 2000) (age: N) (discount: 0).

red s =(*, 1)=>+ s’ suchThat (not check(isSafe(s),isSafe(s’))).

In the above equation (category: gold) (value: 2000) (age: N) (discount:
0) is an arbitrary state of the rule based system to which gold rule can be
applied. CafeOBJ returns false, and thus the induction case is discharged.
Consider the case where the platinum rule is applied;

s = (category: platinum) (value: 2000) (age: N) (discount: 0)

red s =(*, 1)=>+ s’ suchThat (not check(isSafe(s),isSafe(s’)))

CafeOBJ returns false for this case, thus the induction case is discharged.
Following the same methodology the induction case for the upgrade rule was
discharged as well, and thus the proof concludes. The full specification of
the e-commerce site, the reasoning about the structure properties and proof
of the invariant can be found at the [48].

In the area of analyzing the behavior of reactive rules, previous attempts,
e.g. [57] and [58], propose the visualization of the execution of rules to study
their behavior where rules can be shown in different levels of abstraction.
More recent approaches related to the application of formal methods for
analyzing rule based systems and relevant to ours, include the following;
In [59] authors propose a constraint-based approach to the verification of
rule programs. They present a simple rule language, describe how to ex-
press rule programs and verification properties into constraint satisfiability
problems and discuss some challenges of verifying rule programs using a CP
Solver that derive from the fact that the domains of the input variables are
commonly very large. Finally, they present how to detect structure proper-
ties of a simple rule based system. In [56] authors analyze the behavior of

4To modularly verify each transition rule separately we usually, define for each such
transition a new module which only contains one transition rule at a time.

61

Event Condition Action rules by translating them into an extended Petri net
and verify termination and confluence properties of a light control system
expressed in terms of ECA rules.

The proposed approach for the verification of rule programs is based on
a different formalism; in particular it uses the OTS/CafeOBJ method and
rewriting logic. To the best of our knowledge this is the first time it is used
in the area of reactive rules. One motivation for this work was a recent
advancement in the field, and in particular the methodology to theorem
prove rewrite theories [20]. Compared to existing similar approaches, it has
the following contributions.

Compared to [56] where structure errors are formally analyzed, our
methodology can be used for the verification of both structure (conflu-
ence and termination) and safety properties for the specified rule system.
This extends our previous work [55] where only safety properties could be
proved. Second, when proving safety properties both model checking and
theorem proving techniques can be applied, in contrast to [59] where only
model checking support is provided. The combination of these two proving
methods provides strong verification power. Model checking can be used to
search the system for a state when the desired invariant property is violated
(counter example) and next if no such state is discovered, theorem proving
techniques can be applied to ensure that the system preserves the property
in any reachable state. In this way infinite state systems can be specified.
Also, CafeOBJ and Maude allow inductive data structures in state machines
to be model checked and few model checkers exist with this feature. Finally
our approach can be used for the specification and verification of complex
systems due to the simplicity of the CafeOBJ language and its natural affin-
ity for abstraction.

The proposed methodology does not come without limitations. One
possible limitation could be the fact that researchers should be familiar with
the CafeOBJ formalism in order to use the proposed approach. However,
we believe that the mapping from reactive to rewrite rules is natural enough
and the verification method has a clear structure, thus allowing non-expert
users to adopt our methodology with minimum effort.

62

3.4 Formal Analysis and Verification Support for Reactive
rule-based Agents

In this section we compare the methodologies presented in previous sections,
for the specification and verification of intelligent systems whose behavior is
expressed in terms of reactive rules, and report on some lessons learned after
applying them in several case studies. We present, through a case study,
an expanded framework which expresses the functionality of Production
and Event Condition Action rules in terms of equational and rewrite tran-
sition rules, written in CafeOBJ. The proposed methodology, except from
supporting reasoning about the specified rule-based system, verification of
safety properties of the rules and detection of termination and confluence
errors of the rules, it also provides a clear understanding of the specified
rule based system by simulating the execution behavior of the rules. We
also demonstrate a tool that translates a set of reactive rules into CafeOBJ
rewrite rules, thus making the verification of reactive rules possible for in-
experienced users. The two last points are the main contribution of the
presented work.

We recall the two basic reactive rule families: Production rules and
Event-Condition-Action rules, and we emphasize on the definition of events.

A Production rule is a statement of rule programming logic, which spec-
ifies the execution of an action in case its conditions are satisfied, while
Event Condition Action (ECA) rules define an explicit event part which is
separated from the conditions and actions of the rule.

The events of ECA rules can be combinations of atomic events activated
by environmental or internal changes and based on that, they are usually
classified as external and internal. These changes are captured by envi-
ronmental and local variables, respectively. More precisely, external events
are produced by sensors monitoring environment variables [56]. This means
that environmental variables are used to represent environment states that
can be measured by sensors but not directly modified by the system. In this
way, environmental variables capture the nondeterminism introduced by the
environment. Instead, local variables can be both read and written by the
system. An external event can be activated when the value of an environ-
mental variable crosses a threshold; on the other hand, internal events can
only be activated by the actions of ECA rules. Internal events are useful to
express internal changes or required actions within the system. These two
types of events cannot be mixed within a single ECA rule. Thus, rules are
external or internal, respectively. The condition part of an ECA rule is a
boolean expression on the value of environmental and local variables. The
last part of a rule specifies which actions must be performed. Most actions
are operations on local variables which do not directly affect environmental
variables. Thus, environmental variables are read-only from the perspective
of an action. Also, actions can activate internal events. Finally, to han-

63

dle complex action operations, the execution semantics can be sequential or
parallel.

We should mention that while we had first thought that it would be
better to give formal semantics to a specific Rule Markup language (e.g.
Reaction RuleML [41]) we chose to formalize reactive rules expressed in
a more generic style, because in this way more languages can be covered.
Besides, in most cases the semantics of the rules are independent of the
syntax of the specific language. Also, many case studies and related work in
the literature express the rules in this way, so it is easier to test the proposed
methodologies.

3.4.1 A light-control intelligent system

We describe the proposed framework5 through a case study that uses 10
ECA rules to define the behavior of a smart system. In the above table,
rules r1 to r10 are presented, taken from [56]. These rules specify a light-
control intelligent system which attempts to reduce energy consumption by
turning off the lights in unoccupied rooms or in rooms where the occupant
is asleep, using sensors. The system also provides automatic adjustment for
indoor light intensity based on the outdoor light intensity.

The values measured by the sensors are stored in environmental vari-
ables. The measure of a motion sensor that detects whether the room is
occupied or not is expressed by the boolean variable Mtn. A pressure sen-
sor detects whether the person is asleep and this information is stored in
the boolean environmental variable Slp. A light sensor, whose measure is
expressed by the variable ExtLgt (∈ 1, . . . , 10), is used for monitoring the
outdoor lighting.

MtnOn, MtnOff and ExtLgtLow are external events activated when the
environmental values cross a threshold. MtnOn and MtnOff occur when
variable Mtn changes from false to true or from true to false, respectively.
ExtLgtLow occurs when variable ExtLgt drops below 6. Rule r1 initializes
the local variable lgtsTmr to 1 whenever the motion sensor detects no motion
and the lights are on.

Internal events model internal system actions. For example, internal
event SecElp models the system clock and is activated when the variable
lgtsTmr has the value 1. The timer then increases as minute elapses, pro-
vided that no motion is detected (rule r2). If the timer reaches 6, internal
event LgtsOff is activated to turn off the lights and to reset lgtsTmr to 0
(rule r3). Internal event LgtsOff, activated by rule r3 or r7, turns the lights
off and activates another check on outdoor light intensity through internal
event ChkExtLgt (rule r4). ChkExtLgt activates LgtsOn if ExtLgt drops
below 6 (rule r5). Internal event ChkMtn, activated by rule r6, activates

5For the revision in the definitions and the additions in the proposed framework we
refer the reader to [60].

64

Table 5: ECA rules controlling the lights intensity of a house
(R1) When the room is unoccupied for 6 minutes,

turn off lights if they are on.

r1 on MtnOff if (intLgts > 0 and lgtsTmr = 0)
do set (lgtsTmr, 1) par activate(SecElp)

r2 on SecElp if (lgtsTmr > 1 and lgtsTmr < 6
and lMtn = 0) do increase (lgtsTmr, 1)

r3 on SecElp if (lgtsTmr = 6 and lMtn = 0)
do (set (lgtsTmr, 0) par activate (LgtsOff))

r4 on LgtsOff do (set (intLgts, 0) par activate
(ChkExtLgt))

(R2) When lights are off, if external light intensity
is below 6, turn on lights.

r5 on ChkExtLgt if (intLgts = 0 and lExtLgt 6 5)
do activate (LgtsOn)

(R3) When lights are on, if the room is empty or a
person is asleep, turn off lights.

r6 on LgtsOn do (set (intLgts, 6) seq activate
(ChkMtn))

r7 on ChkMtn if (Slp = 1 or (Mtn = 0 and intLgts
>= 1)) do activate (LgtsOff)

(R4) If the external light intensity drops below 5,
check if the person is asleep and set the lights
intensity to 6. If the person is asleep, turn off
the lights.

r8 on ExtLgtLow if (lSlp = 0) do set (intLgts, 6)
r9 on ExtLgtLow if (lSlp = 1) do set (intLgts, 0)

(R5) If the room is occupied, set the lights intensity
to 4.

r10 on MtnOn do (set (intLgts, 4) par set
(lgtsTmr, 0))

LgtsOff if the room is unoccupied and all lights are on, or if the room is
occupied but the occupant is asleep (rule r7).

Formal analysis using Equational Logic. First, to specify this sys-
tem as an equational transition system using our definitions, we will need
the following observers. The five first observers are used in order to observe
the variables’ (local and environmental) changes. The last two are used to
model the detection of the events.

-- observers

Mtn : State -> Bool

65

ExtLgt : State -> Nat

Slp : State -> Bool

lgtsTmr : State -> Nat

intLgts : State -> Nat

event-memory : State -> Name

Mtn-memory : State -> SetofNames

-- variables and constants

var S : State

ops MtnOn , MtnOff , ExtLgtLow , LgtsOff , ChkExtLgt , ChkSlp , ChkMtn

: -> Name

Where, State is the hidden sort denoting the state of the system and S a
variable of the same sort. The events of the rules (internal and external) are
declared as constants of the sort Name. The transitions of the system (and
also constructors of State) are the actions and the external events. Their
definition can be seen below:

E1 , E2 , E8 , E10 : State -> State

A1 , A2 , A3 , A4 , A5 , A6a , A6b , A7 , A8 , A9 , A10 : State -> State

The event of rule 8 is then described by the following conditional equa-
tions;

event-memory(E8(S)) = ExtLgtLow if ExtLgt(S) <= 5 and

event-memory(S) = null

The event ExtLgtLow is detected whenever the external lights’ intensity
drops below 6 and if no other event has been detected in the previous state.
The action of the rule is defined as follows;

intLgts(A8(S)) = 6 if Slp(S) = false and event-memory(S)

= ExtLgtLow

Internal lights intensity will be set to 6, if the occupant is not asleep and
the event ExtLgtLow has been detected in the previous state. The event of
rule 1 is defined as follows;

Mtn-memory(E1(S)) = (Mtn-memory(S)| MtnOff)/ MtnOn if not

(MtnOff /in Mtn-memory(S))

event-memory(E1(S)) = MtnOff if event-memory(S) = null and

Mtn(S) = false and not (MtnOff /in Mtnmemory(S))

In this rule, the extra observer Mtn-memory is used because the external
event MtnOff should only be re-detected if the event MtnOn occurs first,
and vice versa (specific detection order of events). For this reason with the
first equation we define that MtnOff will occur (and will be stored in the
observer Mtn-memory) if it does not belong in the observer Mtn-memory
(in other words if it had not occur before). Also, the only way to be removed
from the observer Mtn-memory is by the occurrence of the event MtnOn.
The same constrain holds for the event MtnOn. This ensures that MtnOff
(resp. MtnOn) cannot be perpetually detected and cause the system to

66

loop. The second equation denotes that the event MtnOff is detected and
its name is stored in the observer event-memory if there is no motion in the
room, if the event MtnOff had not occurred before and if no other event has
been detected in the previous state. The action of the rule is defined as;

event-memory(A1(S)) = SecElp if lgtsTmr(S) = 0 and intLgts(S)

> 0 and event-memory(S) = MtnOff

lgtsTmr(A1(S)) = 1 if lgtsTmr(S) = 0 and intLgts(S) > 0 and

event-memory(S) = MtnOff

After the detection of the event MtnOff, and if lights timer in the previous
state was zero and the internal lights were on (greater than zero), lights timer
will take the value 1 as the result of the action of the rule. Also the internal
event SecElp will be activated. Rule 3, for example, is triggered by the
action of the previous rule (r2) and thus we do not have to specify its event.
The equational transition rule A3 describes the action of the rule, as follows:

lgtsTmr(A3(S)) = 0 if ((Mtn(S) = false) and

(lgtsTmr(S) = 6) and (event-memory(S) = SecElp)) .

event-memory(A3(S)) = LgtsOff if ((Mtn(S) = false) and

(lgtsTmr(S) = 6) and (event-memory(S) = SecElp)) .

The timer (observer lgtsTmr) will be set to zero, if the effective condition
of the rule holds. This means that in the previous state the sensors had not
detect any motion in the room, the timer had the value 6, and the event
SecElp had been successfully detected. At the same time the internal event
LgtsOff will be activated and stored in the observer event-memory.

In a similar way the rest of the rules are defined in our framework. For
the verification of the system, when it is expressed in equational logic, we use
Cafe OBJ’s theorem proving technique [25] to verify desired safety properties
of the rules. For our rule based system an invariant safety property could
be the following; the lights cannot be turned off if someone is in the room
and he/she does not sleep. This is defined in CafeOBJ terms as follows:

inv1(S) = not((intLgts(S) = 0) and (Mtn(S) = true) and

(Slp(S) = false)).

Suppose now we have the following initial state;

event-memory(init) = null

Slp(init) = true

Mtn(init) = true

Mtn-memory(init) = null

intLgts(init) = 1

lgtsTmr(init) = 0

ExtLgt(init) = 4

If we use the reduction red inv1(init), CafeOBJ returns true for this
initial state. For proving that invariant 1 holds when the event and the
action of rule 8 are applied we used the following proof passages:

67

open ISTEP

s’ = E8(s) .

red istep1 .

close

open ISTEP

s’ = A8(s) .

red istep1 .

close

In both cases CafeOBJ returned true and thus the inductive step for
rule 8 was discharged. The full specification of the light-control system as
an equational transition system, and the proof of the invariant for the rest
of the rules can be found at [48].

Formal analysis using Rewriting Logic. A state in rewriting logic
is described as a collection (soups) of observable values, as we have already
mentioned. In order to specify the light-control system using our second
methodology, we use the following observable values;

event-memory:_ : Name -> Obs

Mtn-memory:_ : SetofNames -> Obs

intLgts:_ : Nat -> Obs

Mtn:_ : Nat -> Obs

lgtsTmr:_ : Nat -> Obs

Slp:_ : Nat -> Obs

ExtLgt:_ : Nat -> Obs

An arbitrary state of the system is defined as; (event-memory: e) (Slp:
s)(Mtn: l)(Mtn-memory: m)(intLgts: i)(lgtsTmr: t)(ExtLgt: x), where e,
s, l, m, i, t, x are predefined variables which denote arbitrary values for
the corresponding sorts. Rule r6 for example, which denotes that when the
event LgtsOn is detected the lights intensity is set to 6 and in sequence an
internal event that checks if there is motion in the room is activated, can
now be defined as two rewrite transition rules in CafeOBJ terms, as follows:

trans [A6a] (event-memory: LgtsOn) (Slp: s) (Mtn: l)

(Mtn-memory: m)(intLgts: i) (lgtsTmr: t) (ExtLgt: x)

=> (event-memory: LgtsOn) (Slp: s) (Mtn: l)

(Mtn-memory: m)(intLgts: 6) (lgtsTmr: t) (ExtLgt: x).

ctrans [A6b] (event-memory: LgtsOn) (Slp: s) (Mtn: l)

(Mtn-memory: m)(intLgts: i) (lgtsTmr: t) (ExtLgt: x)

=> (event-memory: ChkMtn) (Slp: s) (Mtn: l) (Mtn-memory: m)

(intLgts: i) (lgtsTmr: t) (ExtLgt: x) if (i = 6).

To denote this rule we do not need to define an event transition, since it
is activated by the internal event of the previous rule (r5). The first rewrite
transition (A6a) specifies the first part of the action, i.e. sets internal lights
intensity to 6, while the second conditional transition will be applied if in
the previous state transition A6a had been effectively applied and it will
activate the internal event ChkMtn.

68

Rule r8, which denotes that if the external light intensity drops below 5
and the person is asleep, lights intensity is set to 6, is defined in two steps
as follows;

ctrans [E8] : (event-memory: null) (Slp: s)

(Mtn: l) (intLgts: i) (lgtsTmr: t) (ExtLgt: x)

=> (event-memory: ExtLgtLow) (Slp: s)

(Mtn: l) (intLgts: i) (lgtsTmr: t) (ExtLgt: x)

if (x <= 5) .

Event ExtLgtLow is successfully detected and stored in the observable
value event-memory when the sensor detects that external light density
drops below 5 and if no other event has been detected in the previous state.
The definition of the action of the rule can be seen below;

ctrans [A8] : (event-memory: ExtLgtLow) (Slp: s)

(Mtn: l) (intLgts: i) (lgtsTmr: t) (ExtLgt: x)

=> (event-memory: null) (Slp: s) (Mtn: l)

(intLgts: 6) (lgtsTmr: t) (ExtLgt: x)

if (s = false).

The action of the rule sets the internal lights intensity to 6 as a reaction
to the detected event, if the person is asleep. Also, event-memory becomes
null. Rule r3, which denotes that when the event SecElp is detected and if
the room is unoccupied for 6 minutes, the timer is set to zero and in parallel
an internal event that turns off the lights is activated, can now be defined
as a rewrite transition rule in CafeOBJ terms, as follows:

ctrans [A3] : (event-memory: SecElp) (Slp: s)

(Mtn: l) (intLgts: i) (lgtsTmr: t) (ExtLgt: x)

=> (event-memory: LgtsOff) (Slp: s) (Mtn: l)

(intLgts: i) (lgtsTmr: 0) (lExtLgt: x)

if (l = false) and (t = 6).

To denote this rule we do not need to define an event transition, since
it is activated by the internal event of the previous rule (r2). The rewrite
transition (A3) specifies the action of the rule, i.e. sets the timer to zero and
also activates the internal event LgtsOff, if the condition of the rule holds.

In a similar way we define the rest rules of the system. The full spec-
ification of the light-control system as a rewrite transition system can be
found at [48]. For the verification of the system, this methodology allows us
to verify both the structure and the behavior of specified rule-based system.
In respect to the structural properties; with the help of CafeOBJ’s search
engine and the operators we have defined [61], we can (a) detect termina-
tion and (b) confluence errors for the system, and (c) simulate the execution
behavior of the rules.

In order to check a rule based system for termination we must perform
the search for all initial states of the system, using the command:

red terminates ?(init).

69

Recall that if true is returned and a final state, it means that this state
of the system will terminate. If false is returned it means that in this initial
state, no transition can be applied or that the reachable state(s) from this
state is(are) not final. Finally, the rewriting may not terminate because
CafeOBJ’s rewriting system may apply a transition rule on and on.

In the last case there is no reason to check the system for confluence
since if a state is not terminating it is not confluent either. In the first two
cases, we proceed with checking the state for confluence errors. Suppose
that the initial state6 of the system is the following; The lights are off, the
room is empty (no one is sleeping), the intensity of the external lights is low,
and we wish to see if this system will terminate or not.

set trace on

init = (event-memory: null) (Slp: 0) (Mtn: 0)

(Mtn-memory: null)(intLgts: 0) (lgtsTmr: 0) (ExtLgt: 4)

s’ = (event-memory: e1) (Slp: s1) (Mtn: l1)

(Mtn-memory: m1) (intLgts: i1) (lgtsTmr: t1) (ExtLgt: x1)

red terminates ?(init)

The command set trace on, instructs CafeOBJ to show in details, the
performed rewrites. CafeOBJ for the above reduction returns the result:
true and found state 3. This means that, state 3 is a final state reachable
from the initial state of the system.

With the command show path id, we can see the applied transitions that
lead to this state and their order. In our case, CafeOBJ returns the sequence
of the transitions E8 and A8. This result is as expected because according
to the rules and our initial state, the external event ExtLgtLow will be
activated (as the external light intensity is low) and since no one sleeps, the
internal lights will be set to 6. This is a final state of the system as no other
transitions can be applied. Having checked the system for termination, we
can proceed with checking for its confluence.

In order to check a rule based system for non-confluence we perform the
search for all the initial states of the system. Recall that if CafeOBJ finds
two solutions it means that the state is not confluent. However, if true is
returned together with the statement No more possible transitions, we must
continue the analysis of the rule based system by conducting one more test
to verify the confluence of the rules. This last check basically simulates the
execution behavior of the rules.

To clarify why this final check is required, suppose we have the following
initial state; The lights are on, the room is occupied but no one is sleeping
and the intensity of the external lights is low (below 5). This is expressed as;
If we check this initial state for confluence CafeOBJ will return the result;
found state 3 and no more possible transitions. In that case, it is not clear

6As we have already mentioned, in cases where the initial state of the system is not
known beforehand we can define the set of possible initial states by defining an arbitrary
initial state and discriminating the cases based on the conditions of the transition rules.

70

how the initial state behaves and further analysis is required. For this reason
we use the following command, which returns all the reachable states from
the initial state of the system.

red init =(*,*)=>* S

This, in combination with the command show path id, can be used in
order to simulate the execution behavior of the rules in our framework. In
our running case study, if we apply the above reduction in combination with
the command show path id we get the following result:

found state 0 (init)

found state 1 (init - E8)

found state 2 (init - E10)

found state 3 (init - E8 - A8)

found state 4 (init - E10 - A10)

found state 5 (init - E10 - A10 - E8)

This result is graphically presented in the following figure.

Figure 4: Graphical representation of the reachable states from the initial
state of the system

In this way we get a clear perception of the execution of the rules. Now,
due to the fact that CafeOBJ system visits each reachable state once, using
this check we can discover that a state can be either:

- final, i.e. no transition can be applied in it, or

- in between, i.e. a transition can be applied in it and will lead to an
already visited final state, or finally

- part of a loop, i.e. a transition can be applied in it but it will lead to
a non-final state already visited in the same state path

In our case study, state 3 is final as the first check already showed. State
5 is an in between state because if transition A8 will be applied in it, it will
lead to state 3 again (that is why CafeOBJ does not apply A8). So this
initial state behaves well as it leads to the same final states.

Discovering a loop using the proposed methodology allow us to isolate
the rule that is responsible for it as well as the condition which causes it.

71

This useful information can be used in order to change the rules and redesign
the system.

Regarding the behavior of the rules; the built-in CafeOBJ search pred-
icate can also be used to prove safety properties for a system specified in
rewriting logic, as we have already mentioned. Proving invariant proper-
ties using model checking can be achieved by searching if there is a state
reachable from the initial state such that the desirable property does not
hold [20].

For example, consider an initial state in which the room is occupied, the
person sleeps, the lights are on and the intensity of the external lights is low;

init = (event-memory: null) (Slp: true) (Mtn: true) (intLgts:

true) (Mtn-memory: null) (lgtTmr: 0) (lExtLgt: 4).

red init =(1,*)=>* (event-memory: e1) (Slp: false) lMtn: true)

(intLgts: false) (Mtn-memory: m1) (lgtsTmr: t1) (ExtLgt: x1).

CafeOBJ returns false for the above reduction, as it cannot find a state
reachable from this initial state, in which the lights are off, the room is
occupied and the person does not sleep. To obtain a formal proof about the
desired property, we use the methodology presented in [20] that allows us to
theorem prove safety properties of specifications written in rewriting logic.

Suppose we are interested in the same invariant property; the lights can-
not be turned off if someone is in the room and he/she does not sleep. This
can be expressed in CafeOBJ using the rewriting approach as follows;

isSafe : State -> Bool

isSafe ((event-memory: e1) (Slp: s1) (Mtn: l1) (intLgts: i1)

(Mtn-memory: m1)(lgtsTmr: t1) (ExtLgt: x1)) = not ((i1 == 0)

and (l1 == true) and (s1 == false))

Suppose also we have the following initial state:

(event-memory: null) (Slp: true) (Mtn: true) (intLgts: 1)

(lgtsTmr: 0) (ExtLgt: 4) (Mtn-memory: null).

For the base case, all we have to do is to check if the following term
reduces to true, which it does for this initial state.

red check(true , isSafe(init)).

Recall that the inductive step consists of checking whether from an arbi-
trary state, say s, we can reach in one step a state, say s′, where the desired
property does not hold. Consider the inductive step where for example, the
transition rule E8 is applied to s.

-- transition E8

eq s = (event-memory: null) (Slp: s1)

(Mtn: l1) (intLgts : i1)(Mtn-memory: m1)

(lgtsTmr: t1) (ExtLgt: 4) .

red s =(*,1)= >+ s’ suchThat (not check(isSafe(s),isSafe(s’))) .

72

In the code above (event-memory: null) (Slp: s1) (Mtn: l1) (intLgts :
i1)(Mtn-memory: m1) (lgtsTmr: t1) (ExtLgt: 4) is an arbitrary state of the
rule based system, in which rule E8 can be applied. CafeOBJ returns false,
and thus this induction case is discharged. Consider now the inductive step
where the transition rule A8 is applied to s.

-- transition A8

eq s = (event-memory: ExtLgtLow) (Slp: false)

(Mtn: l1) (intLgts : i1)(Mtn-memory: m1)

(lgtsTmr: t1) (ExtLgt: x1) .

red s =(*,1)= >+ s’ suchThat (not check(isSafe

(s),isSafe(s’))) .

Where again, (event-memory: ExtLgtLow) (Slp: false) (Mtn: l1) (intLgts
: i1) (Mtn-memory: m1) (lgtsTmr: t1) (ExtLgt: x1) is an arbitrary state of
the rule based system, in which rule A8 can be applied. CafeOBJ returns
false, and thus the induction step for rule 8 is discharged.

In the same way, the induction case for all the transition rules are dis-
charged, and thus the proof concludes. The whole specification of the rule
based system and the proof can be found in [48].

3.4.2 From reactive rules to CafeOBJ rewrite rules

The developed tool is written in Java and takes as input a set of reactive
rules, written using the generic style described before, and automatically
produces a set of rewrite transition rules written in CafeOBJ, implementing
the definitions of the rewriting methodology.

The reactive rules specification has to obey in some syntactic guidelines
which are described in the tool. For demonstration purposes, we present
through the following screenshot, part of the transformation of the set of
eca rules of the running case study.

The developed tool hides the details of the translation. Moreover, except
from the automatically generated rewrite rules (figure 5, module RULES),
it also creates the rest of the CafeOBJ specification which is required so that
the output specification can be given as input to the CafeOBJ processor.
In this way there is no need for the user to add any additional information,
like module and sort declarations, observers, variables and so on (figure
5, module STATE). After the transformation, the user can use CafeOBJ
directly in order to further analyze and verify the behavior of the rules.

We present here some lessons learned throughout our research in for-
malizing reactive rule based systems. A more general comment is that we
believe that equational and rewriting logic is easier to learn than other log-
ics, such as higher order for example, because they are similar to everyday
life reasoning. Hence, we believe that the verification with CafeOBJ is easier
to learn than those with other methods.

Also, transition rules expressed either in equational or in rewriting logic

73

Figure 5: Output of the tool - generated rewrite rules and executable
CafeOBJ specification

are closer to reactive rules researchers mindset (since their reasoning is sim-
ilar to that of rules), thus the transformation is more straight forward. But
that was not obvious from the beginning.

One of the difficulties we faced during our research in reactive rules,
was the semantic difference between events and actions, i.e. the fact that
while events can occur at anytime and can be straightforwardly mapped to
transitions, actions must be executed after the detection of their triggering
events. This issue was addressed by mapping an ECA rule into two different
transition rules and by introducing appropriate observers that can handle
this difference (by helping us decide if the system must react to a transition
or treat it as an incoming event).

Another difficult point was selecting the most appropriate definition of
termination and confluence for rule-based systems that can also be expressed
in Cafe OBJ terms. To overcome this, we conducted a thorough search in
the related literature and more precisely we based our definitions in those
of [59], which had the level of abstraction that met our purposes.

As to which of the proposed methodologies is better, we should mention

74

that while the equational approach has better modeling capabilities as it
provides succinct, composable specifications and provides stronger verifica-
tion support, in order to decide which of the two is the most suitable, we
have to take into account that these frameworks aim in bringing reactive
rules’ researchers closer to the area of formal methods. Thus we have to
mainly considerate their needs and focus. To this end, we believe that the
equational approach should be adopted when the specified system is com-
plex and critical and we need a really expressive formalism for modeling the
reactive rule-based system. However, the rewriting approach is better suited
for the reactive rules researchers community, as it is more natural and easier
to use. Also the rewriting logic approach offers a seamless framework for
verifying reactive rules as both safety properties and structure errors can
be checked. Finally it supports both theorem proving and model checking
techniques. Thus we believe that in most cases the rewriting approach is
preferred.

For this reason and in order to make the rewriting approach even more
friendly for the potential users, we have developed a tool that automatically
transforms a set of reactive rules into a set of rewrite rules in CafeOBJ.

Sometimes though, it is difficult for inexperienced users to do interactive
theorem proving especially for complex systems. This is another reason
why we believe that the rewriting logic approach is better suited for verifying
reactive rule-based systems since it supports model checking as well, which is
easier to learn and use. Also we hope that through this work which presents
how to verify reactive rules with simple steps, the verification process will
become clear even for inexperienced users.

75

4 Context-aware Adaptive Systems

”Systems that can anticipate the needs of users
and act in advance by ’understanding’

their context” [Chen 2003]

”Systems that are able to adapt their operations to the
current context without explicit user intervention.

Context-awareness here aims at increasing
usability and effectiveness by taking

environmental context into
account” [Dustdar 2006]

Nowadays computers are becoming more pervasive in every aspect of
our lives. It no longer makes sense for systems to work independently; they
need to cooperate with each other, with the context and with the user. We
see computers and microprocessors being used in many items that make
our lives more convenient. Even the simple alarm clock or microwave has
microprocessors inside.

“Imagine John, who checks in a hotel and has some preferences, say for
example he would like to wake up at 6am, would like the AC to operate at his
preferred temperature and humidity, would like his breakfast served at 8am.
Usually John would have to take the effort to set up his preference manually
and waste time. With the help of communicating devices and the use of his
context, these preferences can be communicated to the devices in the hotel
room automatically. According to his context his alarm clock would ring at
6am, his AC temperature adjusted to suit his requirement and his breakfast
delivered at 8am etc. Now if another person checks into the same room
after John has moved out, all the above mentioned utilities would operate
differently as per the guest’s preferences. The same room, under different
contexts behaves differently” [62].

Context should be created spontaneously for any kind of task be it travel
booking or purchasing electronic items. User wants the results to suit best
his needs. As computers and electronic devices become ubiquitous, the need
for an automatic method of adjusting their behavior to our needs arises.

Pervasive computing envisions a seamless and distraction-free environ-
ment of distributed and heterogeneous applications and devices that utilize
resources in their environment. Devices and applications are context-aware,
meaning that they can sense changes to their executing environment and
manage information automatically and transparently. Recent technological
advances in mobile devices as well as wireless and sensor networks make it
possible to construct pragmatic, large-scale applications for pervasive com-
puting. Large-scale applications have the potential to span different in-
frastructures (wireless networks, sensors, services), combine different tech-
nologies (e.g., communications, middleware) and device types, to offer an

76

integrated pervasive framework with rich capabilities across many concep-
tual application layers.

SatNav as context-aware system. In a Satellite Navigation System
(SatNav), the current location is the primary contextual parameter that is
used to automatically adjust the visualization (e.g. map, arrows, directions,
etc.) to the user’s current location. However, looking at current commercial
systems, much more context information is used and much of visualization
has been changed. In addition to the current GPS position, contextual pa-
rameters may include the time of day, light conditions, the traffic situation
on the calculated route or the user’s preferred places. Beyond the visualiza-
tion and whether or not to switch on the backlight, the calculated route can
be influenced by context, e.g. to avoid potentially busy streets at that time
of day [63].

Automatic light as context-aware system. At house entrances and
in hotel hallways automatic lights have become common. These systems can
also be seen as simple context-aware systems. The contextual parameters
taken into account are the current light conditions and if there is motion
in the vicinity. The adaptation mechanism is fairly simple. If the situation
detected is that it is dark and that there is someone moving, the light will
be switched on. The light will then be on as long as the person moves, and
after a period where no motion is detected, the light will switch off again.
Similarly, the light will switch off if it is not dark anymore.

The GUIDE project. The GUIDE project (GUIDE 2001) at Lan-
caster University was the first larger and public installation of a research
prototype to explore context-awareness in the domain of tourism. It fo-
cused on how context can be used to advance a mobile information system
for visitors to the historic town of Lancaster.

MobileWARD - Mobile Electronic Patient Record, Aalborg
University, Denmark. MobileWARD is a prototype designed to support
morning procedure tasks in a hospital ward, and is able to display patients
lists and patient information. The device presents information and function-
ality according to the location of the nurse and the time of the day. This
project simulates the context events linked to the location of the staff mem-
ber. Patients are chosen through a patient-list or an activation of a barcode
at the bed-side. The scale and complexity of such application types pose
new challenges. Adaptive programs are generally more difficult to specify,
verify, and validate due to their high complexity. Particularly, when involv-
ing multithreaded adaptations, the program behavior is the result of the
collaborative behavior of multiple threads and software components, and
thus its formal analysis is required.

77

4.1 An Algebraic framework for the verification of context-
aware adaptive systems

In this section we present an algebraic framework for modeling and verify-
ing context-aware adaptive systems. This framework exploits the expressing
power of the OTS/CafeOBJ method, the support for behavioral object com-
position and for parametric modules. In this way, it enables reasoning about
the behavior of the components of such a system with respect to their con-
text and about the system’s adaptation in a consistent way. It can be used
as a reference model and for verifying that a design of such a system satisfies
safety properties.

The increased need of people to be connected everywhere and at all
times, has resulted in a demand for intelligent applications that can sense
and react to the changes in their requirements, users preferences and their
environment. Such systems can be met in the literature under the term
pervasive, self-adaptive or context-aware systems.

The term pervasive refers to the seamless integration of devices into
the users’ everyday life. Context-aware systems are able to adapt their
operations to the current context without explicit user intervention and are
strongly connected with self-adaptive systems. This fact has created two
research areas; researchers in context-awareness focus on how to model and
manage the context information, while researchers in self-adaptation are
more concerned with how the system adapts and they usually separate the
system’s functionality from its management. This choice can increase the
complexity of the system and calls for a more effective and reliable design.

In addition, nowadays there is a strong interest in the functional cor-
rectness of these systems as they are increasingly realized for safety-critical
domains that include bank systems, healthcare and emergency scenarios.
On the other hand, formal methods appear as a natural candidate to study
the behavior of context-aware adaptive systems as a whole and to ensure
their proper behavior and reliable development as they can discover design
errors at an early stage of development.

However, these systems present new challenges compared to traditional
systems and also addressing context awareness and self-adaptation in a con-
sistent and integrated manner is not a trivial task. In particular, context-
aware adaptive systems need to a) support the ability to monitor their envi-
ronment, b) be flexible and c) dynamically adapt their behavior in response
to changes in environmental conditions and in the behavior of the entities of
the system. The latter changes can be induced by failures or unavailability
of parts of the software system itself for example. In these circumstances, it
is necessary for the system to re-adjust and continue achieving its purpose.

78

4.1.1 Proposed framework

To address the challenge of modeling context-aware adaptive systems in a
consistent way, we want our framework to capture the characteristics of
such systems naturally. Also, in order to satisfy the need for reliability in
their development we want to be able to express the systems’ requirements,
and to verify formally that their design satisfies the safety properties derived
from the requirements. We explain here how the design principles of our
framework are in accordance with these goals. Some general characteristics
that context-aware adaptive systems share are the following:

- One or more entities have a common environment/context

- The entities’ behavior depends on the context

- The entities can interact with each other in order to perform a task

- The changes in the context can affect the behavior of the entities

- The actions of the entities could change the properties of the context

From these characteristics it is clear that the states of both the entities
and the context change. The whole system adapts itself as well to cope
with such changes. Thus, we argue that a context-aware system must be
defined as a dynamic system (i.e. system with changing states). Also, we
wish our framework to be able to observe the environment and to support
flexibility. The latter can be enhanced if the refinement of one component
does not affect the design and properties of the whole system. Thus we
believe that both the entities and the context should be defined as separate
systems. Additionally, we argue that the interaction of these components
should be defined at a higher level so that it can be expressed in a clear way
independently of a specific implementation of the context or the entities.
For this reason, we believe that the whole system should be modeled as
hierarchical composite system. Finally, the specification of such systems
should be defined in a language that supports its formal verification. To
achieve the above goals we propose a framework, whose architecture is shown
in the following figure. In particular:

1. We introduce Context and Entity OTSs that specify the context and
entities respectively.

2. We define a higher (meta-) level OTS with these objects as components
(Context and Entity OTSs), using the methodology of behavioral ob-
ject composition. This higher level OTS, called System, describes the
full functionality of the context-aware adaptive system. The compo-
nents’ interactions and the system’s adaptation are formally defined
at this higher level.

79

System metaOTS

actions Ts

observations Os

Base-level objects

Context OTS

actions Tc

observations Oc

Entity OTS

actions Te

observations Oe

Entity OTS

actions Te

observations Oe

Figure 6: The proposed framework for an abstract context-aware adaptive
system. The system is composed by a context and a possibly unbounded
number of entities (represented by the dotted lines).

3. Finally, we specify these OTSs in CafeOBJ algebraic specification lan-
guage that allows the formal verification of desired safety properties
using theorem proving techniques.

Context OTS. We define the Context OTS which contains all the in-
formation that can be used to describe the environment of the entities. This
information is modeled by observation operations, denoted by Oc that given
a state of the context return a data type. Intuitively they can be thought
of as experiments that can be used to characterize the state of the context,
i.e. two states are considered equivalent if they return the same results for
all possible experiments. During the development of the system this infor-
mation could be mapped to any implementation, as ontologies for example.
Finally, in order to describe how and under which circumstances the state
of the context changes, we use a set of transition operations denoted by Tc.

Entity OTS. We define the Entity OTS which specifies an entity in a
similar way, where with Oe we denote the set of observation operators that
characterize the state of an entity and with Te the transitions which corre-
spond to the actions that change its state. The key distinction between a
Context OTS and an Entity OTS is that the state of the entities depends on
that of the context. However, sometimes it is difficult to identify when an
observation should be part of the context and when it should be part of an
entity. In most cases the following rule can be applied; the observations that
cannot be affected by the entities but affect them, are part of the context.

System OTS. We define the System OTS which describes the meta-
level where the reasoning for the behavior of the entities with respect to their

80

System

Entity2
Entity1

Context

projected
projected

projected

...

Te ;Te ;...;Te1 2 n
T’e ;T’e ;...;T’e1 2 n

T’’e ;T’’e ;...;T’’e1 2 n

Ts1

Te1

Entityn

Figure 7: Graphical representation of the behavioral composition of OTSs

context is enabled. For this reason, it is defined as a composed OTS7 with
components a Context OTS and an arbitrary (and unbounded) number of
Entity OTSs (figure 7). Thus, the state of the System fully depends on the
states of its components. The System’s observers Os, depend on the values
of Oc and Oe. The System’s transitions Ts, correspond to the actions that
change its state and define the system’s adaptation. They also define how
the changes on the state of the context affect the states of the entities and
vice versa. This interaction is described through projection operations that
”project” the composed System state to the states of its components and
relate the transitions Ts with Tc and Te. The communication between the
components is defined in a clear way by using equations at the level of the
specification of the composed object. In this way, we can naturally capture
the relationships between the components of a complex context-aware adap-
tive system. In figure 8, an example of the interaction between the OTSs
is presented graphically. The System transition τs1 changes the state of all
components; it is projected to the transition τc1 of the Context OTS and to
the sequence of transitions τe1; τe2 . . . ; τen, τ ′e1; τ ′e2 . . . ; τ

′
en, τ ′′e 1; τ ′′e 2 . . . ; τ

′′
e n

of the Entity OTSs. In the table below the observers and transitions of the
proposed framework are shown.

Table 6: Abstract OTSs of the framework.
Context OTS Entity OTS System OTS

∗[Csys]∗ ∗[Esys]∗ ∗[Sys]∗
Tci : Csys D1 . . . Dn → Csys Tei : EsysD1 . . . Dn → Esys Tsi : SysD1 . . . Dn → Sys
Oci : CsysD′1 . . . D

′
n → D′ Oei : EsysD′1 . . . D

′
n → D′ Osi : SysD′1 . . . D

′
n → D′

Composition of OTSs. The way a composite object is defined mainly

7For details on how the composition of OTSs is still an OTS see [64], definition of
composed OTS.

81

depends on the connection between its components. So to define the System
as the behavioral composition of the Entity and Context OTSs we have to
take into account that;

- The state of the entities depends on that of the context (and maybe
vice versa), i.e. there exists synchronization between them.

- The configuration of context-aware adaptive systems may change, de-
noting that entities may malfunction and be removed or that simply
entities enter/exit the context we are examining.

Thus, we use synchronized parallel composition which supports both
synchronization and dynamic composition [15]. Dynamic composition allows
an arbitrary number of component objects. This means that a dynamic
object can be created and deleted in a composed object and its initialization
is done with appropriate data playing the role of object identifier [16]. In
particular, in order to retrieve the states of the components of a context-
aware adaptive system, we define the following operators.

- Sys denotes the state space of the System object S,

- Id denotes the set of identifiers for the entity objects,

- Esys denote the states of the entity objects, En and

- Csys denote the states of the context object, C.

Projection operations are subject to some conditions (see [14] for details,
definitions 1 and 4), which can be informally summarized as follows:

- All actions of the compound object are related via the projection op-
erations to actions in each of the component.

- Each observation of the compound object is related via the projection
operations to an observation of some component.

Finally, Context and Entity OTSs are specified as base level objects i.e.
objects without projection operators.

Parametric System module. Taking a step further, we define the
core functionality of a context-aware adaptive system in such a way that
it can be reused for the modeling of different systems that share the same
principles. In this way, part of the specification effort can be reduced. This
is achieved mainly by exploiting CafeOBJ’s support for parametric modules.

We have created a small library that can be expanded by the users to
specify a specific context-aware adaptive system. In this way the core func-
tionality of the system will be independent of the details of the particular

82

implementation and the components of the specified system can be refined
without needing to change the whole specification. Also, a system speci-
fied by extending the library will satisfy a minimum set of context-aware
characteristics.

More precisely, we have defined abstract theories that denote some el-
ementary functions for entities and context objects (in the modules Entity
and Context OTS respectively). These capture the following characteristics
of a context-aware system; at the Context OTS we have defined appropriate
operations and axioms for inserting, removing an entity from the context
and for observing if an entity belongs to an instance of that context. At the
Entity OTS, we have defined action and observation operators for describing
a possible failure and a recovery of an entity and for denoting the passing
of time (using a time advancing transition, a clock observer and a module
representing the time).

The abstract theories are then used to compose a higher-level object
(System OTS), which is parameterized by them. The projection opera-
tors describe the interaction between the Entity and Context OTSs (cont :
Sys → Csys and entity : Sys NzNat → Esys, where Nznat is a prede-
fined module denoting non-zero natural numbers and we used to identify the
entity objects). Using them, the initialization of all objects is defined (en-
tity(init,N1) = initesys and cont(init) = initcont) and the synchronization
of the Entity clock with that of the System. Also, the System’s actions are
related to those of its components. For example the System’s transition Fail
is related to the Entity’s transition fail (of the particular entity) and to the
Context’s transition delEntity (as it should be removed from the context).
Similarly, the System’s transition Recover is related to the Entity’s transi-
tion recover and to the Context’s transition addEntity. In CafeOBJ, the
module System, with parameters the Entity and Context OTSs, is defined
as: System(X :: Entity, Y :: Context).

Context and Entity OTSs can then be extended by the users to capture
the behavior of a specific context-aware adaptive system (Extended Entity,
Extended Context). The signatures of the modules Extended Entity and
Extended Context (which import the predefined modules Entity and Con-
text respectively and inherit their behavior) are shown in the following table;
where, additional details of the particular implementation should be added
- required data types, transitions and observers.

Next, the user-defined objects are used to instantiate the System OTS
module (which can also be extended). This is defined in CafeOBJ terms as;
mod∗ ExtendedSystem {pr(System(ExtendedEntity, ExtendedContext)}.
In this way, the resulting theory preserves the composition between the ex-
tended components. This methodology is presented graphically in the figure
below. We believe that even though the size of this library is small it can
help users to model a context-aware system by providing the skeleton of
the specification and more importantly the organization/hierarchy of the

83

Table 7: Extended OTSs of the framework.
ExtendedEntity OTS ExtendedContext OTS

mod∗ ExtendedEntity mod∗ ExtendedContext
pr(Entity) pr(Context)

.
f : → Esys d : Csys → Bool

– axioms for operator f – axioms for operator d
.

ExtendedSystem

ExtendedEntity ExtendedContext

Parametric
System

Core

Entity
Core

Context
Core

Instantiates Instantiates

1. Import and expand Context theory2. Import and expand Entity theory

3. Instantiate System (and expand its theory)

Figure 8: Steps to be taken on order to create the specification of a context-
aware adaptive system.

components of their system. The library can be found at [48].
We have chosen to use the formalism of Observational Transitions Sys-

tems (OTS) for the specification of context-aware adaptive systems and the
CafeOBJ algebraic specification language for the verification of their behav-
ior due to the characteristics presented above (object composition, para-
metric modules) and the fact that it is based on equational logic, which is
easier to learn than other logics such as higher order logic, because replacing
equals by equals is part of everyday reasoning [65]. This method has been
effectively applied to the analysis of different systems [65,66] and we believe
that it is suitable for analyzing complex context-aware adaptive systems.

4.1.2 A traffic monitoring system

Intelligent transportation systems (ITS) are a worldwide initiative to exploit
information and communication technology to improve traffic. One of the
challenges in this area is the effective monitoring of traffic. In [67, 68] a
monitoring system that provides information about traffic jams has been
introduced that can be used by different kinds of clients such as traffic
light controllers, driver assistance services, and so on. This system adapts

84

itself dynamically according to the changing traffic conditions and possible
malfunctions of parts of the system and is a context-aware adaptive system.
In order to demonstrate the effectiveness of the proposed framework we
applied it to this traffic monitoring system.

The system consists of a set of intelligent cameras which are situated in a
road. These cameras monitor and detect traffic jams and communicate with
each other in order to report possible failures. Thus the system’s behavior
depends on both the behavior of the cameras and the road. Each camera has
a limited viewing range and cameras are placed to get an optimal coverage
of the road with a minimum overlap. An example of the highway is shown
in figure 10, where cars move in one direction only. The main functionality
of this traffic monitoring system is:

1. inform clients about traffic jams in a decentralized way, and

2. make the system robust to camera failures

To realize a decentralized solution, when traffic jam spans the range of
multiple cameras they collaborate in organizations that provide information
about traffic. These organizations have a master/slave structure and they
split when the traffic resolves. The master of each organization is responsible
for merging and splitting that organization by synchronizing with its slaves
and for informing interested clients about the traffic jams. For these reasons,
the master uses the context information provided by its slaves about their
monitored traffic conditions. Each camera may have one of the above roles:
master of a single member organization, master of an organization with
slaves, or slave in an organization. Initially, all the cameras start as masters
of single member organizations.

Depending on the role of each camera and the traffic conditions, the
organizations may be adapted. If a master of a single member organization
camera detects traffic it sends a ”merge organization” request to its neigh-
boring camera. If the neighbor does not detect traffic, organizations are not
changed. If traffic is jammed and the neighbor is a master with slaves, the
camera joins the organization and becomes master with slaves (figures 11
and 12). If the neighbor is a slave the camera joins the organization as a

camera N1 camera N2 camera N3 camera N4

viewing range
of N1

viewing range
of N2

viewing range
of N3

viewing range
of N4

Figure 9: An example of the road with the cameras and their viewing ranges.

85

camera N1 camera N2 camera N3 camera N4

merge

MMM M

Figure 10: Camera N2 sends a merge request to camera N3 which is a master
with slaves.

camera N1 camera N2 camera N3 camera N4

MSM M

M

SM Master of a single member organization

Master with slaves

Slave

Organization

Figure 11: Camera N3 accepts the request and an organization with cameras
N2, N3 and N4 is formed.

slave as well. Finally, if both are masters of a single member organization,
the camera which sends the request becomes the master with slaves of the
joined organization while the other becomes a slave.

In order to operate properly each camera is dependent on a particular
set of cameras. A master of a single member organization is dependent on
its neighboring nodes, a master with slaves is dependent on its slaves and
its neighbors and a slave is dependent on its master and its neighbors. To
ensure that the system will be fault tolerant, a coordination protocol that
uses ping-echo messages is used. Each camera sends ping messages to its
dependent cameras. Wait time indicates when a camera should respond
with an echo message after a ping message has been sent to that camera. A
camera reaches timeout when the time exceeds the last ping time for that
camera plus the wait time, and in that case adaptation of the system is
required.

Formal specification. To specify this context-aware adaptive system
in our framework we first identify that the cameras correspond to entities
which are situated in a context. This context contains information about
the road and the traffic. We assume that we have an arbitrary number
of cameras and that the road is divided into viewing ranges so that each
camera has one such range (figure 10). After importing the library modules

86

Context, Entity and System OTSs we create the Extended Context, Entity
and System OTSs, by adding details of this traffic monitoring system.

The ExtendedContext OTS specifies the traffic on the road. It needs to
specify the number of cars on a viewing range at any given state and how
these cars enter, exit the road and move along the viewing ranges. The
observers and transitions used to define it can be found in table 8. We
assume that initially there are zero cars in the road. This is declared in
CafeOBJ terms as;

numberofcars(initcont ,N2) = 0.

In this equation, N2 represents an arbitrary range of the road and the
operator initcont represents the initial state. The effective condition of the
movecar transition is declared in CafeOBJ as;

c-movecar(C,N2 ,N3) = (s(N2) = N3) and not(numberofcars(C,N2)

= 0).

This equation states that a car moves from range N2 to N3 if these
ranges are subsequent and the number of cars at N2 is not zero. The result
of the transition movecar is defined as follows;

numberofcars(movecar(C,N2 ,N3),N1) = (numberofcars(C,N1)+1)

if c-movecar(C,N2,N3) and (N1 = N3).

numberofcars(movecar(C,N2 ,N3),N1) = sd(numberofcars(C,N1),1)

if c-movecar(C,N2,N3) and (N1 = N2).

These equations denote that the number of cars at range N3 increases
by one and at range N2 decreases by one, after the successful application of
the transition.

In table 8 NzNat is used to identify the viewing ranges. initcont and
each transition are constructors of Sys, which corresponds to RS . RS is the
type denoting the set of all reachable states wrt S. Also Sys denotes RS but
not Y if the constructor-based logic is adopted, which is the current logic
underlying the OTS/CafeOBJ method.

In table 8 Bool is a (built-in) visible sort representing the truth values
and Setofnat denotes a set of natural numbers.

Table 8: Observers and transitions of the ExtendedContext OTS.
Observers

numberofcars : Csys NzNat → Nat Returns the number of cars
at a specific viewing range

Transitions

releasetraffic : Csys NzNat NzNat → MCsys Models the feeding of a
viewing range with cars

movecar : Csys NzNat NzNat → Csys Models the movement of a
car along subsequent
viewing ranges

87

Table 9: Observers of the ExtendedEntity OTS.
Observers

sendpingtimer : Esys NzNat → Time Stores the time where a ping
message is sent to a camera

timeout : Esys NzNat → Bool Becomes true when the timeout
of another camera is observed

mymaster : Esys → NzNat Returns the master with slaves
myslaves : Esys → Setofnat Returns the set of slaves
received : Esys NzNat → Bool Becomes true when a ping

message is received
sent : Esys NzNat → Bool Becomes true when an echo

message is received
cansend : Esys NzNat → Bool Becomes true when a ping

message can be sent to another
camera

The ExtendedEntity OTS must express the full functionality of a camera,
i.e. denote the role of each camera in an organization, and model the sending
and receiving of messages and so on. For the definition of its state space the
observers of table 9 were used.

The observer mymaster, which returns the current master with slaves
of the entity, returns the constant null if the camera is a master of a single
member organization (i.e. has no master with slaves). If the camera is a
slave, mymaster returns the identification number of its master with slaves
and finally if it is a master with slaves it returns its own id. To specify how
the state of a camera changes the transitions of table 10 were used. The
definition of the timeout of a camera is given below in CafeOBJ notation;

timeout(tick(E,T1),N2) = true if (now(E) + T1 >

sendpingtimer(E,N2) + waitime and sent(E,N2) = false.

The above equation states that a timeout of camera N2 is observed after
the application of transition tick if the time exceeds the time where the last
ping message was sent to N2 plus the waitime (which is a CafeOBJ constant
of sort time) and no echo message from N2 has been received.

The ExtendedSystem OTS defines how the cameras interact and behave
based on their context, to provide an effective monitoring of traffic. The
observers that were used to define its state can be seen in table 11.

In this table the visible sort status represents the traffic and free and
congested are two constants of this sort. Client is a visible sort representing
an arbitrary client interested in the traffic conditions of the road. Content
models the content of the message that is sent to a client when he/she asks
for information.

The transitions that change the state of the ExtendedSystem can be seen
in table 12. In the following, we will give some details for the transitions

88

Table 10: Transitions of the ExtendedEntity OTS.
Transitions

changemaster : Esys NzNat → Esys Changes the current master
with slaves of the entity

addslaves : Esys Setofnat → Esys Represents the addition of a
set of slaves to the current set of
slaves

removeslave : Esys NzNat → Esys Represents the removal of a slave
from the current set of slaves

removeallslaves : Esys → Esys Removes all the slaves of the
entity directly

sendping : Esys NzNat T ime → Esys Models the sending of a ping
message to another camera

receiveping : Esys NzNat T ime → Esys Models the receiving of a ping
message from another camera

sendecho : Esys NzNat T ime → Esys Models the sending of an echo
message to another camera

receiveecho : Esys NzNat T ime → Esys Models the receiving of an echo
message from another camera

Table 11: Observers of the ExtendedSystem OTS.
Observers

trafficstatus : Sys NzNat → status Returns the traffic status of a
camera

request : Sys Client NzNat → Bool Becomes true when a client asks
a camera for information

message : Sys → Content Returns the content of the message
that is sent to the client

leftneighbor : Sys NzNat → NzNat Given a camera, returns its left
neighboring camera

rightneighbor : Sys NzNat → NzNat Given a camera, returns its right
neighboring camera

textitpingmessage, detectfailure, monitortraffic and orgrequest, which define
the main functionality of the system.

The transition pingmessage is used to describe the ping-echo coordina-
tion protocol (the first NzNat argument in the signature denotes the sender
and the second the receiver). When the transition pingmessage(M,N1, N2)
is applied successfully in an arbitrary system state S, this corresponds to
camera N1 sending a ping message to camera N2. Thus, it is related with
the application of the transition sendping to camera N1 and receiveping to
camera N2. This is defined using the appropriate projection operator with
the following equations;

entity(pingmessage(S,N1,N2,T1),N3) = sendping(entity(S,N1),N2,T1)

if (N3 = N1).

89

Table 12: Transitions of the ExtendedSystem OTS.
Transitions

pingmessage : Sys NzNat NzNat T ime → Sys Represents the exchange
of ping messages

echomessage : Sys NzNat NzNat T ime → Sys Represents the exchange
of echo messages

detectfailure : Sys NzNat NzNat → Sys A camera detects the failure
of another camera

monitortraffic : Sys NzNat → Sys A camera monitors the traffic
jam

orgrequest : Sys NzNat NzNat → Sys Represents the merge of the
organizations

askinfo : Sys Client NzNat → Sys A client asks a camera info-
rmation about its traffic
conditions

sendinfo : Sys Client NzNat → Sys The camera sends the requested
information to the client

entity(pingmessage(S,N1,N2,T1),N3) = receiveping(entity(S,N2),

N1 ,T1) if (N3 = N2).

The transition detectfailure defines the adaptation of the system when
a camera fails, as the system should be able to operate correctly after a
failure although the traffic state in the range of the failed camera is no longer
monitored. This transition may have four different outcomes according to
the role of each camera. In the first case, if a master of a single member
organization detects the failure of another master its role stays the same
after the application of the transition. In the second case, if a master with
slaves detects the failure of one of its slaves its role does not change. But,
if the slave that fails is the only slave of the organization, its master with
slaves will become master of a single member organization. Finally, if a slave
detects the failure of its master, it will become master of a single member
organization after the application of the transition. The effective condition
of detectfailure can be seen below;

c-detect(S,N1,N2) = timeout(entity(S,N1),N2) and not(failure

(entity(S,N1))).

It states that the camera that detects the failure must not have failed
and the camera that fails must have reached a timeout. The result of the
successful application of detectfailure(S,N1, N2) in an arbitrary system
state S is projected to the state of the arbitrary camera N3 by the following
equations:

entity(detectfailure(S,N1,N2),N3) = changemymaster

(entity(S,N3), null) if (N3=N1) and c-detect(S,N1 ,N2) and

(mymaster(entity(S,N1))=N2) and (mymaster(entity(S,N2))=N2) .

90

entity(detectfailure(S,N1,N2),N3) = entity(S,N3) if

(N3=N2) and c-detect(S,N1 ,N2) .

entity(detectfailure(S,N1,N2),N3) = entity(S,N3) if

not (N3=N2) and not (N3=N1) and c-detect(S,N1 ,N2) .

The first equation states that the transition changemymaster is applied
to camera N3, if it is equal to N1, and changes its master with slaves to
null (i.e. becomes master of a single member organization) if the effective
condition of the transition holds and if in the previous state N1 was a slave
of N2 and N2 was master with slaves. The state of camera N3, if it is equal
to N2, does not change as declared with the second equation. Finally, if
camera N3 is neither N1 nor N2 its state stays the same (third equation).

The monitoring of the traffic by the cameras is denoted by the transition
monitortraffic. This transition is a good example of how the state of
the ExtendedSystem OTS depends on the state of the ExtendedContext
OTS. When monitortraffic is applied this interaction is defined using the
projection operator cont, as shown below;

trafficstatus(monitortraffic(S,N1),N3) = free if

(numberofcars(cont(S),N1) <= n) and

c-monitor(S,N1) and (N3 = N1) .

trafficstatus(monitortraffic(S,N1),N3) = congested if

(numberofcars(cont(S),N1) > n) and

c-monitor(S,N1) and (N3 = N1).

In the above equations, the observer trafficstatus of the ExtendedSys-
tem OTS returns the constant free as the traffic status of a viewing range,
if the observer numberofcars of the ExtendedContext OTS on that range
returns a value below a constant n (and congested otherwise).

Finally, the transition orgrequest defines the adaptation of an organiza-
tion when a new camera joins it. Assume that camera N1 sends a ”merge
request” to camera N2. If N2 also detects traffic then they will be merged
in one organization. In CafeOBJ terms this is defined as follows;

entity(orgrequest(S,N1,N2),N3) = changemymaster(entity(S,N3), N1)

if c-org(S,N1,N2) and mymaster(entity(S,N2)) = null and (N3 = N2)

entity(orgrequest(S,N1,N2),N3) = addslaves(changemymaster

(entity(S,N3),N1),N2) if (N3 = N1) and c-org(S,N1 ,N2) and

mymaster(entity(S,N2)) = null

These equations denote how the states that correspond to cameras N1
and N2 change. Camera N2 becomes a slave with N1 as its master with
slaves (first equation) and camera N1 becomes master with slaves and
also adds N2 to its list of slaves (second equation) if the effective con-
dition of the transition holds and if in the previous state both cameras
were master of single member organizations. But in the effective condi-
tion of c-org(S,N1,N2) there exist the sub-conditions trafficstatus(S,N1)

91

= congested and trafficstatus(S,N2) = free and trafficstatus depends
on the observer numberofcars of the ExtendedContext OTS. Thus, the
states of the entities depend on the state of the context, i.e. this transi-
tion exhibits entity-context dependency. We believe that it is important for
a framework for context-aware adaptive systems to support both Entity-
Context and System-Context, dependencies. Our framework can naturally
express them as was exhibited by the definition of transitions orgrequest
and monitortraffic, respectively.

Formal verification. A framework that is used for the specification
of context-aware adaptive systems must be equipped with verification tech-
niques for ensuring their correct behavior. This need becomes even bigger
when we are designing critical systems where it can be very costly to correct
possible errors and it is important to detect them before the implementation
of the system’s specification.

We demonstrate here how our framework can be used to verify the spec-
ification of context-aware adaptive systems, by applying the OTS/CafeOBJ
method to the traffic monitoring system presented in the previous section.

In table 13 the properties that were verified for the traffic monitoring
system are presented. Invariants 1 and 2 concern the proper communication
between two cameras via the ping-echo protocol. In particular, the first
property expresses the fact that the system should not be in a deadlock. A
deadlock for example may occur when two cameras have sent ping messages
to each other and wait for responses, without being able to send any messages
(figure 13). Thus, we state that two cameras cannot have received ping
messages from each other at the same time. The second property declares
that if a camera has received a ping message from another camera then
it cannot send a ping message to that camera. Finally, the third property
states that it is not possible for a camera to be a slave of another camera and
the second camera not to have the role of master with slaves, meaning that a
slave and its master with slaves appear always together. This is an important
property for the system because if we had only slaves without masters the
interested clients could not be informed about the traffic conditions.

To prove such properties with the OTS/CafeOBJ method, four steps
need to be taken, as we have already mentioned. To explain better the
verification process, we will use invariant 1 as our running example.

1. The first step is to express the property as a predicate in CafeOBJ
terms in a module, usually called INV.

inv1 : Sys NzNat NzNat -> Bool

inv1(S,N1,N2) = not(received(entity(S,N1),N2) and

received(entity(S,N2),N1)) .

2. The next is to define the inductive step in a module (usually called
ISTEP), i.e. a predicate which states that if the property holds in an

92

Table 13: Invariant properties of the traffic monitoring adaptive system.
Definition in CafeOBJ terms

1. not(received(entity(S,N1), N2) & received(entity(S,N2), N1))
2. not(received(entity(S,N1), N2) & cansend(entity(S,N1), N2))
3. not(N1 /in myslaves(entity(S,N2) & not(mymaster(entity(S,N2)) = N2))

Informal description of the properties in natural language

1. It is not possible for two cameras to have received ping messages from
each other at the same time.

2. It is not possible for a camera to send ping message to another camera
if it has received a ping message from that camera.

3. It is not possible one camera to be slave of another and the second
camera not to be master with slaves.

N1 N1 N1N2 N2 N2

waiting echo
from N1

waiting echo
from N2

waiting echo
from N2

waiting echo
from N1

received(camera(S,N1),N2) = true received(camera(S,N2),N1) = true received(camera(S,N1),N2) = true

received(camera(S,N2),N1) = true

Figure 12: A case where the cameras are in a deadlock.

arbitrary state, say s, then that implies that it holds in any successor
state, say s′.

istep1 : -> Bool

istep1 = inv1(s,n1,n2) implies inv1(s’,n1,n2) .

3. The third step is to ask CafeOBJ to prove via term rewriting (using
the reduce command), if the property holds for an arbitrary initial
state.

open INV

red inv1(init ,n1 ,n2) .

close

4. Finally, s′ must be instantiated and then ask CafeOBJ to prove the
inductive step for each transition rule. For example for the transition
pingmessage this is declared as follows;

open ISTEP

s’ = pingmessage(s,n3,n4,t1) .

red istep1 .

close

When we ask CafeOBJ to prove a property three results might be re-
turned by the system: true, false and a CafeOBJ term. If true is returned

93

Table 14: Case splitting in proving invariant 1.
Case 1 Case 2

received(camera(s, n3), n4) = false received(camera(s, n3), n4) = true
CafeOBJ returns false CafeOBJ returns true.
red inv2(s, n3, n4) implies istep1. Proved.
CafeOBJ returns true.
Proved.

the proof is successful. For example, CafeOBJ returned true for the initial
state. If a CafeOBJ term is returned, different to true or false, then there
exist some terms that the system cannot fully reduce. The user must in-
tervene and split the case, by stating that the returned term equals to true
and false in turn (computer-human interactive method). This creates two
new proof obligations and is known as case splitting. The case defined by
the following proof passage, returned the term received(entity(m,n3), n4),
for the transition pingmessage.

open ISTEP

-- c-ping(s,n3,n4) = true.

failure(entity(s,n3)) = false.

failure(entity(s,n4)) = false.

cansend(entity(s,n3),n4) = true.

mymaster(entity(s,n3)) = n3.

mymaster(entity(s,n4)) = n3.

n1 = n3.

n2 = n4.

s’ = pingmessage(s,n3,n4,t1).

red istep1 .

close

Thus, to help CafeOBJ reduce the returned term, we had to split it in
two subcases. The first, where received(camera(s, n3), n4) = false returned
true. But the second, where received(camera(s, n3), n4) = true returned
false.

In this case, where CafeOBJ returns false, two things might hold. The
property does not hold for our system, or the case that returned false is
unreachable. In the first case we have found a counter example and it might
be necessary to redesign our system. In the second case we must create a
lemma, a new invariant, which states that the case that returned false is
not reachable. Of course the lemma must be proved separately. As the case
returned in our example was unreachable for our system, we used invariant 2
to discard it (Table 13). Following this methodology, we successfully verified
that the specification satisfies the invariant properties of table 13. The full
specification of the traffic monitoring system and the proofs of the invariants
can be found at [48].

Some existing methodologies for specifying context-aware and self-adaptive
systems, include the work of Weyns et al. in which a formal reference model,

94

called FORMS, is presented for describing and reasoning about the key char-
acteristics of system’s adaptation [68]. Coronato et al. propose an exten-
sion of ambient logic and ambient calculus for specifying the requirements
of critical pervasive applications. Also they discuss some issues concerning
runtime testing and static verification using model-checking [69]. In an-
other approach, Khakpour et al. use dynamic policies to govern and adapt
system’s behavior [70].

Few approaches targeting the verification of these systems exist. Schnei-
der et al. propose a technique to extract an abstract model of the adapta-
tion behavior of such systems, specify the desired properties using temporal
logics and model-check them. To represent infinite state systems, finite au-
tomata are used, however termination cannot be guaranteed as the authors
state, due to the undecidability of most verification problems [71]. Hussein
et al. present a method for specifying and verifying context-aware software
systems, in which the model is transformed to Petri Net and then the ver-
ification is performed with the Romeo tool. Also, they classify the possible
system variations into dependent and independent for reducing the possible
system states and the transition between them, making the state explosion
problem not easily reached [72]. Adler et al. propose a framework for verify-
ing the system’s adaptation based on temporal logics and the Isabelle/HOL
prover that allows the combination of theorem proving and model checking
techniques. However, they focus on model-checking as they believe that
using a theorem prover can be tedious [73]. Iftikhar et al. report a first
step on modeling adaptive decentralized systems using timed automata. A
case study is presented where the desired properties are specified in timed
computation tree logic and verified using the Upaal tool [67]. Finally, Rakib
et al. give ontological representation of contexts, use Horn-clause rules to
build their rule-based system and verify properties using Maude’s model-
checker. Their approach is focused in modeling the communication between
agents and in the verification of time resource-bounded properties [74]. Our
framework addresses both the specification and verification of context-aware
and self-adaptive systems and is based on Observational Transition Systems
written in CafeOBJ, a different formalism than those adopted in the above
approaches.

Our framework compared to existing approaches has the following con-
tributions. First, while other approaches that use model checking tech-
niques [67, 69, 71, 72, 74] cannot model an unbounded number of context
aware agents or may suffer from the state explosion problem, our approach
has the ability to deal with systems that have an infinite number of states
and a variable number of agents.

Second, model checking often does not support understanding of the
specified system since it only gives ”yes” or ”no with counter example”, in
contrast with our approach which returns enough feedback to the user and
thus helps him/her understand better the system’s design.

95

Third, the OTS/CafeOBJ method compared to methodologies that are
based on theorem provers such as Isabelle/HOL [73] has been argued to
have the following advantages: (1) balanced human-computer interaction
and (2) flexible but clear structure of proof scores. The former means that
humans focus on proof plans, while computers deal with tedious and detailed
computations. For example humans do not necessarily have to know which
equations or rules should be applied to the proof. The latter means that
lemmas used in the proof do not need to be proved in advance and that
results obtained by case analyzes and lemmas discovered are explicitly and
clearly written in proof scores [53].

We also discuss here how our framework supports the need of such sys-
tems to realize context-awareness and flexibility, in more details. Context-
awareness, i.e. the ability of the system to monitor the environment, is
expressed in our framework via the compositionality of the OTSs. The envi-
ronment of the entities is modeled as a separate system, the Context OTS,
whose states can be observed by all other OTSs through projection opera-
tors. In [75] it is stated that flexibility is achieved by separation of concerns,
computational reflection and component-based design. Separation of con-
cerns is realized by separating the specification of the System composed OTS
from the specifications of its components, i.e. the Context and the Entity
OTSs. In this way, we are allowed to change the specification of the former
without changing the specification of the latter. Computational reflection
refers to the ability of a system to reason about, and possibly alter its own
behavior. This feature is realized in each OTS system via its observation
operators. These monitor its state and depending on their observable val-
ues the OTS can fire transition rules thus, changing its behavior. Finally,
component based design is about composing loosely coupled independent
components into systems and the ability of each component to adapt its
behavior autonomously. This is achieved with the modular design of the
system where the transitions of the base level objects can change their state
independently of the higher level system.

However, the formal framework proposed here is not without limitations.
The OTS/CafeOBJ approach to systems’ analysis is less rigorous than anal-
ysis using other theorem provers like Isabelle/HOL [76] and Coq [77]. Proofs
constructed under their support are basically guaranteed to be correct, while
humans might overlook some cases to consider or proofs of some lemmas in
the proof score approach because there are no tools available to check such
human errors [53].

To solve this issue, some tools have been developed, in particular Gateau
[78] and Crème [79]. Gateau generates proof scores given state predicates for
case splitting and necessary lemmas. Crème is an automatic invariant verifi-
cation tool for specifications of OTSs. To take advantage of model checkers,
which are complementary to interactive theorem provers, two other tools
have been developed, Chocolat/SMV [80] and Cafe2Maude [81]. Choco-

96

lat/SMV translates CafeOBJ specifications of OTSs into SMV specifications,
which can be model-checked with SMV. Cafe2Maude translates CafeOBJ
specifications of OTSs into Maude specifications that can be model-checked
with the Maude’s model checker. We are also working towards these direc-
tions by developing a tool that will automate the OTS/CafeOBJ verification
method using the Athena proof system [66,82] (see next chapter).

97

5 On Integrating Algebraic Specifications with Poly-
morphic Multi-Sorted First-Order Logic via Athena

Methods of software verification can be divided into formal methods,
which rely on rigorous analysis of mathematical models of the system being
checked and the desired properties; static analysis methods, which seek er-
rors without running the software; dynamic analysis methods, which verify
actual behavior of the system under study in some scenarios of its opera-
tion; and review or inspection, which is performed by experts based on their
experience and knowledge.

All these methods have their advantages and disadvantages, different
application domains, and their efficiency may differ significantly in different
contexts. Valuable verification of large scale complex systems is better with
the combined use of these methods, because their combination can overcome
disadvantages of the individual methods.

In algebraic specification methods for example, a branch of formal meth-
ods area, systems are specified based on algebraic modeling, and then the
specifications are verified against requirements using algebraic techniques.
Algebraic specification languages such as CafeOBJ [12], Maude [83] and
CASL [84] have well-known advantages for modeling and reasoning about
digital systems. The specifications are relatively simple, readable and writ-
able, and can be executed and automatically analyzed in various other ways
to provide valuable information to the modelers.

However, specification languages have better results, when they are in-
tegrated with more conventional theorem proving systems. CASL, for in-
stance, has been interfaced with HOL/Isabelle [85,86], through HOL-CASL
[87]. Also the Hets tool (Heterogeneous Tool Set [88, 89]) has connections
with the algebraic specification languages Maude and CASL and external
theorem provers (SPASS, Vampire, Darwin, KRHyper and MathServe).

In this chapter we propose a framework of integration of the CafeOBJ
algebraic specification language with the Athena [82] interactive theorem
prover, and a common interface that transforms OTS-based specifications
written in CafeOBJ into Athena specifications. The aim of the integration
of these two environments (not their semantics) is to exploit both the nice

98

properties of CafeOBJ specifications and the soundness and automation in
verification offered by Athena. The proposed methodology integrates the
two environments (not their semantics)

Algebraic specification methods are mainly concerned with providing
support for the systematic development of correct programs from specifi-
cations with verified properties. In the OTS/CafeOBJ approach, CafeOBJ
provides mechanized implementations of Observational Transition Systems
(OTSs), a species of behavioral specifications, that allow users to specify
distributed systems using multi-sorted conditional equational logic with sub
sorting. The specifications are executable (via rewriting), which is useful for
building up computational intuitions about the underlying system. In ad-
dition, CafeOBJ allows users to compose proof scores that establish certain
invariant properties, typically by induction.

Athena on the other hand, is a system based on general polymorphic
multi-sorted first-order logic. It integrates computation and deduction, al-
lows for readable and highly structured proofs, guarantees the soundness of
results that have been proved, and also has built-in mechanisms for gen-
eral model-checking and theorem-proving, as well as seamless connections
to state-of-the-art external systems for both.

By integrating these two methodologies we wish to combine the strengths
of CafeOBJ, most notably succinct, composable, executable specifications
based on conditional equational logic with those of Athena, namely, struc-
tured and readable proofs, soundness of the results and greater automation
both for proof and for counterexample discovery.

5.1 Athena -First-Order Logic- proof system

Athena [82, 90] is an interactive theorem proving environment, with sepa-
rate languages for computation and deduction. As a programming language,
Athena is a higher-order functional language. As a theorem proving system,
Athena is based on polymorphic multi-sorted first-order logic. For conven-
tional programming, Athena has built-in domains like strings, booleans and
numbers, but also lists, terms and sentences of (first-order, multi-sorted)
logic, substitutions, and so on [90].

The main mechanism for program composition is the procedure call.
Procedures are higher-order as they can take procedures as arguments and
return procedures as output as well. The main tool for constructing proofs
is the method call. A method call represents an inference step and can
be primitive or complex. Methods can accept as arguments other methods
and/or procedures, and thus are also higher-order.

The evaluation of a procedure call, if it does not raise any error, can
result in a value of any type, while the evaluation of a method call can
result only in a theorem: a sentence of logic that is derived by inference
from axioms and other theorems.

99

Athena’s methods are expressions of proofs. A key attribute of the
Athena proof language is that such expressions of proofs are both machine-
checkable and human-readable. The readability of Athena proofs is due to
the natural way with which one can express important proof methods. In
part, this is due to a fundamental mechanism of Athena, its assumption
base.

The assumption base is a global set of sentences maintained by Athena.
More precisely, the assumption base for a certain point in the proof con-
tains all the facts that are known to be true at that point. Initially the
system starts with a small assumption base, containing defining axioms for
some built-in function symbols. When an axiom is postulated or a theo-
rem is proved, the corresponding sentence is inserted into the assumption
base. During a proof construction, Athena’s methods can interact with the
assumption base, checking to see if some arguments are present in the set
and/or making new entries [90]. This seems to be a natural way of reasoning
that differentiates Athena from other interactive proof systems.

Another distinctive characteristic of Athena is its connection with various
external systems. Through its interfaces with powerful automated theorem
provers like Vampire and SPASS, Athena provides significant proof automa-
tion8. Finally Athena’s integration with those provers is seamless, meaning
that the user does not have to leave Athena’s high-level notation in order to
call the external systems.

5.1.1 Athena’s tools for OTSs verification

We present here several features of the methodology that can be used to
better understand the specified system, model-check desired properties and
verify them via theorem proving, both automatically and in a structured
and more detailed way.

Simulation. In Athena rewriting is efficiently performed by compiling
equational (and conditional equational) axioms into functional code. Pro-
grammatic access to that code is given via the unary procedure eval, which
will take an arbitrary term t and will attempt to reduce it to a normal form
t′ (a term that contains only constructors) by executing the various com-
piled procedures associated with the axioms defining the function symbols
that occur in t.

Based on eval, a procedure, simulate, takes a sequence of states s1, . . . , sn,
where s1 is usually the initial state and each si for i > 1 is obtained by
applying a transition operator to si−1 and (if necessary) to automatically
generated constants of appropriate sorts (depending on the signature of the

8Vampire [91] is a theorem prover for first-order classical logic developed in the Uni-
versity of Manchester and SPASS [92] is an automated theorem prover for first-order logic
with equality developed in Max-Planck-Institut.

100

transition operator), and prints out each state in the sequence by applying
all observer functions to the given state (plus other constants, if necessary,
depending on the signatures of the observers), and specifically by evaluating
the applications of those observer functions (by using the relevant axioms
as rewrite rules).

Counterexample discovery. Counterexamples to conjectures (i.e.,
to conjectured invariants) in Athena can often be discovered automatically
with the falsify procedure. Athena is also integrated with external systems
that can be used for counter model generation, most notably SMT and
SAT solvers, but falsify is a built-in facility and has the simplest interface:
To falsify a conjecture p, we can use (falsify p N). Here N is the desired
quantifier bound, namely, the number of values of the corresponding sort
that we wish to examine (in connection with the truth value of p) at each
quantifier of p.

When falsification fails within the given bound, the term ’failure is re-
turned. When falsification succeeds, it returns specific values for the quan-
tified variables that make the conjecture false.

Automated Theorem Proving. A method for completely automated
inductive reasoning is automatically defined whenever a new structure or
datatype is introduced. The name of the method is the name of the corre-
sponding structure joined with the string -induction, in lower case.

ATPs are not only available for proving inductive properties, but for
proving any goal whatsoever, from any premises whatsoever. This type of
more fine-grained application of automated theorem proving is provided by
the language constructs

p from p1, . . . , pn

and

p from L

where L is an arbitrary list of sentences. In both cases, the sentences on
the right-hand side of from are the premises from which the derivation is
to proceed, while the single sentence p on the left-hand side of from is the
desired goal to be derived from the given premises. For even more fine-
grained control one can use the primitive method prove-from, which allows
for setting time limits and other parameters, and choosing which ATP to
use (Spass is used by default).

Structured Proofs. Completely automated correctness proofs are usu-
ally difficult or impossible to obtain. Even when possible, a completely auto-
matic proof will not shed much light on a system’s workings. A structured

101

proof that derives the desired result in a piecemeal fashion can be much
more valuable in explaining the underlying system, i.e., in explaining why
a given property holds. In addition, the effort invested in constructing the
proof often pays off in increased understanding, and also in the discovery of
errors, unintended consequences of design constraints, and so on. Athena
uses a Fitch-style formulation of natural deduction [93] which helps to make
proofs and proof algorithms more perspicuous.

Proofs’ Checking. Proofs in Athena have a formal evaluation seman-
tics which guarantee that a proof which has been successfully evaluated
(checked) is in fact sound. This can increase our confidence in the correct-
ness of the result.

5.2 Proposed framework: Cafe2Athena, from CafeOBJ to
Athena Specifications

The OTS/CafeOBJ approach presents many advantages as discussed in the
previous chapters, the most important of which in our opinion and experi-
ence is that the proof score methodology can effectively guide the user to
discover the required case splittings and occasional lemmas for the proof.
However, we believe that this methodology could benefit when used in com-
bination with the Athena proof system for the following reasons:

At first, each proof conducted in Athena is checked for soundness by
the system. Thus, Athena could act as a validator for the proofs conducted
in CafeOBJ. Also, Athena as we have already mentioned is integrated with
some of the strongest automated theorem provers (ATPs) of the state of
the art, like Vampire [91] and SPASS [92]. Thus, via Athena, access to
these highly efficient ATPs can be enabled for OTS/CafeOBJ specifications
as well, which could help with the automation of the verification process.
Finally, Athena uses, a Fitch style, natural deduction proof system. Such
types of proof structures are easy to follow and thus it could help with the
understanding of OTS/CafeOBJ proofs by a wider audience.

For the above reasons we propose a verification methodology which com-
bines both environments (CafeOBJ and Athena) which can be summarized
to the following steps:

- Step 1: create the OTS specification in CafeOBJ

- Step 2: automatically, generate an equivalent Athena specification

- Step 3: attempt to falsify using Athena the property under verification.
If unsuccessful proceed to the next step else either the specification or
the property should be revised.

102

- Step 4: apply the proof score methodology in CafeOBJ until a lemma
is required. Discover a candidate lemma in CafeOBJ that can discard
the problematic case.

- Step 5: attempt to falsify the candidate lemma in Athena. If unsuc-
cessful continue the proof score using the candidate lemma else either
the specification or the property should be revised.

- Step 6: iterate steps 4 to 5 until the proof scores methodology is
completed for the property in question and also for all the lemmas
used.

- Step 7: using the insights gained by the proof scores (case splittings
and lemmas) generate an Athena proof and check its soundness.

With the proposed methodology (steps 1 to 3), the user could save con-
siderable time by first attempting to falsify the property in question. If
indeed a counter example is returned by Athena then either the property
in question is not invariant for the specification, or there might be a bug
in the specification itself. In the first case, the proof is completed and the
property falsified. In the second case the output of Athena usually provides
sufficient information for the discovery and correction of the bug.

During the verification of complex systems with the proof score method-
ology, it is possible that the user will consider as lemmas, properties which
while successfully discard the problematic cases, are not invariant for the
specification. This usually is discovered at a late stage of the verification of
the lemmas, in which case the proof needs to be recreated using a different
candidate lemma. This can at times become an important time-sink for the
verification. Athena, could potentially inform the user of the error in the
candidate lemmas at a much earlier stage (steps 4 to 5) and thus save the
user valuable time.

Also once the proof score methodology is completed, by transferring the
insights gained by it to Athena we can easily create a formal proof for the
property in question. Athena can thus inform us about the soundness of the
proof or point to the errors of our reasoning.

Finally, as we mentioned earlier the final proof constructed in Athena
will be in a style easy to understand and thus could help provide explanation
as to why the property is invariant or not for the system, in other words act
as a sort of documentation.

5.2.1 Rules of translation

In order to obtain an Athena specification from a specification written in the
OTS/CafeOBJ method we have defined an appropriate translation schema.
The basic units of OTS/CafeOBJ specifications and their transformation
into Athena notation are shown in Table 15.

103

Table 15: The basic units of OTS/CafeOBJ specifications and their trans-
formation into Athena notation.
OTS/CafeOBJ notation Athena notation

tight modules datatypes
loose modules domains
state structure
initial state state constructor
state transitions state constructors
observers functions
equations axioms

More precisely, in Athena initial algebras (with tight semantics) are spec-
ified using the keyword datatype, whereas an arbitrary carrier (with loose
semantics) is introduced with the domain keyword. An induction principle is
automatically generated for every new datatype. States are formalized as a
structure and state transitions as its constructors. Structures are very much
like datatypes, except that there may be confusion, i.e. different constructor
terms might denote one and the same object. An induction principle is also
automatically generated (and, of course, valid). We continue with the dec-
laration of the observers. They are defined as functions with the constraint
that they take as input a state (and maybe additional input) and return
some datatype. The equations that define the initial state, as well as the
pre- and post-conditions of the state transitions are defined as axioms. One
last remark is that Athena variables, that will needed for the definition of
the axioms, start with a question mark, but identifiers can refer to variables,
i.e., variables are denotable values in Athena’s programming language).

In more details, an arbitrary OTS specification written in CafeOBJ terms
is translated into an Athena specification through the operator cafe2athena
as follows:

Datatype modules:

cafe2athena(mod! M1 {[m1] . . .})
=

datatype m1 cafe2athena(. . .)

cafe2athena(mod* M2 {[m2] . . .})
=

domain m2 cafe2athena(. . .)

OTS modules (sort representing state space, initial state, transi-
tions):

cafe2athena(mod S {∗[Sys]∗ op init : → Sys .

bop a : Sys Vj1 ... Vjn → Sys . . .})
=

structure Sys := init | (a Sys Vj1 . . . Vjn)

104

Observers:

cafe2athena(bop o : Sys Vi1 . . . Vin → V)

=

declare o := [Sys Vi1 . . . Vin] → V

Variables:

cafe2athena(Var xi1 : Vi1 . . . Var xin : Vin)

=

define [xi1 ... xin] := [?Vi1 . . . ?Vin]

Init axiom:

cafe2athena(eq o(init, xi1, . . . , xin) = f(xi1, . . . , xin))
=

assert* init-axiom := ((o init xi1 . . . xin) = f xi1 . . . xin)

where xi1,...,xin are Vi1 ...Vin sorted CafeOBJ variables and f(xi1, ..., xin)
is the value of the observer at the initial state.

Effective condition:

cafe2athena(op c-a : Sys Vj1 ... Vjn → Bool .

eq c-a(w, xj1, ..., xjn) = g(w, xj1, ..., xjn) .)
=

define c-a := lambda (w xj1 ... xjn) (g w xj1 ... xjn)

where w is a hidden sorted variable and xj1, ..., xjn are Vj1...Vjn sorted
CafeOBJ variables.

Transition axioms:

cafe2athena(eq o(a(w, xj1, ..., xjn), xi1, ..., xin) = e-a(w, xj1, ..., xjn, xi1, ..., xin)
if c-a(w, xj1, ..., xjn) .)

=

assert a-axiom :=

((o(a w xj1 ...xjn) xi1 ... xin) = (e-a w xj1 ... xjn xi1 ... xin)
if (c-a w xj1 ... xjn))

where e-a(w, xj1, ..., xjn, xi1, ..., xin) is the changed value of the observer af-
ter the application of the transition.

Here we present the declaration of an invariant property in CafeOBJ
terms and the definition of the induction schema.

-- declaration of the invariant property

mod INV {

-- arbitrary values

op s : -> Sys .

ops i j : -> Pid .

-- name of invariant to prove

op inv1 : Sys Pid Pid -> Bool

-- CafeOBJ variables

var S : Sys

vars I J : Pid

105

-- invariant to prove

eq inv1(S,I,J) = (pc(S,I) = cs and pc(S,J) = cs implies I = J) . }

-- declaration of the inductive step

mod ISTEP {

pr(INV)

-- arbitrary values

op s’ : -> Sys

-- name of formula to prove in each induction case

op istep1 : -> Bool

-- formula to prove in each induction case

eq istep1 = inv1(s,i,j) implies inv1(s’,i,j) . }

The definition of the corresponding invariant in Athena can be seen below
(the induction schema is pre defined in Athena).

define (inv1 s) := (forall ?i ?j . pc s ?i = cs & pc s ?j = cs

==> ?i = ?j)

Here we present the proof score of the desired invariant property in
CafeOBJ, for the initial state and when the transition try(s, k) is applied.

-- proof score

-- I. Base case

open INV .

red inv1(init ,i,j) .

close .

-- II. Induction case

-- 1. try(s,k)

open ISTEP .

-- arbitrary values

op k : -> Pid .

-- successor state

eq s’ = try(s,k) .

-- check

red istep1 .

close

The corresponding proof skeleton in Athena can be seen below.

by-induction (forall ?s . goal-property ?s) {

init => (!prove (goal-property init))

| (state as (try s k)) =>

pick-any i:Pid j:Pid

assume hyp := (state at i = cs & state at j = cs) {

goal := (i = j);

goal from (ab)

}

}

5.2.2 Semantic correctness of the translation

We should mention at this point that we restricted the translation to non-
parametric modules, and that the only hidden sort of a specification is the

106

hidden sort denoting the state space of the OTS. By enforcing these two
restrictions on the style of the OTS/CafeOBJ specifications it is trivial to see
that the semantics for both languages are equivalent. Indeed the parametric
module system does not add to the expressiveness of the language, however
not supporting it will result in an overhead in the specification code. Second,
the second assumption does not impose any violation of generality because
we are only interested in translating OTS specifications and not behavioral
specifications in general.

Thus it is safe to claim the semantic correctness of the translation since
in both languages the underlying semantics is basically the same, i.e. Order-
sorted Conditional Equational Logic (in which constructors are (explicitly)
used). However in order to be more accurate we also here that the transla-
tion is complete w.r.t. invariant properties.

Lemma 5.1: Let SP be an OTS/CafeOBJ specification and SP ′ an OT-
S/Athena specification obtained by the proposed translation. Also assume
that:

o (a w xj1 ...xjn) xi1 ... xin = voi after the application of the transition a
in SP ′,

then

o(a(w, xj1, ..., xjn), xi1, ..., xin) = voi after the application of the correspond-
ing transition a in SP .

To prove this, we show that a conditional transition ceq o(a(w, xj1, ..., xjn)
, xi1, ..., xin) = rvoi if c-a(w, xj1, ..., xjn) in SP can be applied to obtain the
equation, that means that we show c-a(w, xj1, ..., xjn) is true and also that
rvoi = voi.

From the assumption, the condition of the transition rule a in SP ′ holds,
that is: (c-a w xj1 ... xjn) = true. By applying the operator cafe2athena
inversely in this effective condition, we obtain that: cafe2athena−1(c-a w
xj1 ... xjn) = c-a(w, xj1, ..., xjn) = true.

This means that the effective condition of the corresponding transi-
tion a in SP also holds and thus the transition will be effectively applied,
i.e. ceq o(a(w, xj1, ..., xjn), xi1, ..., xin) = e-a(w, xj1, ..., xjn, xi1, ..., xin) if
c-a(w, xj1, . . . , xjn).

By applying again the operator cafe2athena inversely to the returned
value of the observer, we obtain: cafe2athena−1(e-a(w, xj1, ..., xjn, xi1, ..., xin)
= (e-a w xj1 ... xjn xi1 ... xin) = voi. �

This means that the corresponding observers in SP and SP ′ after the
application of the corresponding transitions, return the same values.

107

The following theorem is about a kind of completeness of our translation
system. The theorem states that if a state property is invariant of an OTS/
CafeOBJ specification, then the translated property is also an invariant of
the translated OTS/Athena specification.

Theorem 5.2: Let SP be an OTS/CafeOBJ specification and P a state
property in SP . Assume SP ′ and P ′ are translated from SP and P . Then,
SP ′ |= Inv′P whenever SP |= InvP .

Proof. Assume SP ′ 6|= Inv′P . This means that there exists a counter-
example state in SP ′, say s, reachable from the initial state such that P ′(s)
= false. Assume that in order to reach this counter-example state the
following sequence of transition rules is applied: ai0(so), ai1(s1), ..., aik(sk).

In SP respectively, after the application of the corresponding transitions
in the corresponding initial state, we obtain a state, say w. By applying
lemma 3.1 for each of the above transition rules, we see that the corre-
sponding observers in this state have the same values with those in SP ′

(a).
In [94] authors present two ways to go from equational logic to first-

order logic. More precisely, they state that many examples for comorphisms
arise from subinstitutions. For example, many-sorted equational logic is
subinstitution of many-sorted first-order logic (b).

In addition, in [95] authors state that the institution morphism µ =
(Φ, α, β) from FOL to EQL maps any FOL signature (S, F, P) to the
corresponding algebraic one (S, F), regards any set of equations as a set
of first-order sentences over (S, F, 0), and regards any (S, F, P)-model as
a (S, F)-algebra by forgetting the interpretations of predicate names in P .
Also, it is easy to show that the satisfaction property holds (b).

From (a) and (b), we can conclude that in w the corresponding state
property will not hold, i.e. P (w) = false, and SP 6|= InvP , which contra-
dicts our hypothesis �

5.2.3 Cafe2Athena Tool

In order to make the proposed methodology more agile, we have developed a
tool that takes as input an OTS specification written in CafeOBJ and auto-
matically produces an Athena specification, implementing the rules of trans-
lation we previously presented. The tool is written in Java and hides the
details of the translation, since the users load a CafeOBJ specification file,
press the ”Translate to Athena” button and get the corresponding Athena
specification. Having obtained the Athena specification of a system we can
give it directly to the Athena prover and adopt the proposed methodology.
More information about the Cafe2Athena tool can be found in [48,96].

108

Figure 13: A snapshot of tool that translates OTS/CafeOBJ specifications
into Athena specifications

To demonstrate the benefits and the effectiveness of the proposed method-
ology we present its application to appropriate case studies.

5.3 A Mutual Exclusion Protocol Using an Atomic Instruc-
tion

In our mutex system, we have a set of processes, each of which is executing
code. A process, at any system state, is either in some critical section of
the code or in some remainder (waiting) section. When a process p enters
its critical section, the resulting state becomes locked. When p exits the
critical section, the resulting state is unlocked. For p to enter its critical
section in some state s, p must be enabled in s. A process p is enabled in s
iff p is in its remainder section in s and s is not locked. This is, therefore,
the effective condition of the enter state transition for a given process. The
effective condition of the exit transition is for the process to be in its critical
section. We have two observer functions, one that takes a state s and a
process id p and tells us what section of the code p is executing in s (critical
or remainder), and a function that takes a state s and tells us whether s is
locked.

5.3.1 Step 1. Specification in CafeOBJ.

The specification of the mutex OTS in CafeOBJ is presented below.

mod! LABEL {

[Label]

ops rs cs : -> Label

op _=_ : Label Label -> Bool {comm}

var L : Label

eq (L = L) = true .

eq (rs = cs) = false .}

109

mod* PID {

[Pid]

op _=_ : Pid Pid -> Bool {comm}

var I : Pid

eq (I = I) = true .}

mod* MUTEX {

pr(LABEL + PID)

[Sys]

-- an arbitrary initial state

op init : -> Sys

-- observation functions

bop at : Sys Pid -> Label

bop locked : Sys -> Bool

-- transition functions

bop enter : Sys Pid -> Sys

bop exit : Sys Pid -> Sys

-- CafeOBJ variables

var S : Sys

vars I J : Pid

-- init

eq at(init ,I) = rs .

eq locked(init) = false .

-- enter

op c-enter : Sys Pid -> Bool

eq c-enter(S,I) = ((at(S,I) = rs) and not locked(S)) .

ceq at(enter(S,I),J) = cs if (I = J) and c-enter(S,I) .

ceq at(enter(S,I),J) = at(S,J) if not((I = J) and c-enter(S,I)) .

ceq locked(enter(S,I)) = true if c-enter(S,I) .

ceq enter(S,I) = S if not c-enter(S,I) .

-- exit

op c-exit : Sys Pid -> Bool

eq c-exit(S,I) = (at(S,I) = cs) .

ceq at(exit(S,I),J) = rs if (I = J) and c-exit(S,I) .

ceq at(exit(S,I),J) = at(S,J) if not((I = J) and c-exit(S,I)) .

ceq at(exit(S,I),J) = at(S,J) if not(I = J) and not c-exit(S,I) .

ceq locked(exit(S,I)) = false if c-exit(S,I) .

ceq exit(S,I) = S if not c-exit(S,I) .}

5.3.2 Step 2. Specification in Athena.

Using the Cafe2Athena tool we obtain the specification of the mutex OTS
in Athena. Some parts of the specification are explained below.

A domain of process identifiers (Pid) and a datatype for code labels (cs
and rs, for critical and remainder section, respectively) have been intro-
duced:

module Mutex {

domain Pid

datatype Label := rs | cs

assert label-axioms := (datatype-axioms "Label")

110

Here, rs and cs are the (nullary) constructors of the Label algebra. The
datatype-axioms of Label are quantified sentences that assert no-confusion
and no-junk conditions for the constructors. The effect of the assert com-
mand is to insert those conditions into the global assumption base.

States are formalized as a structure and the state transitions as con-
structors of this structure, as follows:

structure State := init | (enter Pid State)

| (exit Pid State)

In the following we can see the declaration of the observer functions:

declare at: [Pid State] -> Label

declare locked: [State] -> Boolean

declare at: [Pid State] -> Label

declare locked: [State] -> Boolean

The “at” function tells us the label of a given process in a given state.
Binary function symbols can be used in infix in Athena (the default notation
is prefix), so if p and s are terms of sort Pid and State, respectively, then (p
at s) gives us the label of p in state s. The term (locked s) tells us whether
or not s is locked.

We now present the axioms that define the initial state, as well as the
pre- and post-conditions of the two state transitions (entering and exiting).
First, appropriate variables for the given sorts are defined.

define [i j s s’] := [?i:Process ?j:Process ?s:State

?s’:State]

assert* init-axioms := [(_ at init = rs)

(~ locked init)]

The initial-state axioms are simple enough: every process in the initial state
is in the remainder section, and the initial state is not locked.

For the transition axioms of enter we see it is helpful to define the
effective condition as a separate procedure, called enabled-at :

define (enabled-at i s) := (s at i = rs & ~ locked s)

The axioms for the enter transition for example, are presented below:

assert* enter-axioms :=

[(i enabled-at s ==> locked i enter s)

(i enabled-at s ==> i at i enter s = cs)

(i enabled-at s & j =/= i ==> j at i enter s = j at s)

(~ i enabled-at s ==> i enter s = s)]

Note that assert* automatically universally quantifies all free variables,
so, for instance, the first of the four enter-axioms, when fully written out in
prefix form, is this:

111

(forall ?i:Mutex.Pid

(forall ?s:Mutex.State

(if (and (= (Mutex.at ?i:Mutex.Pid ?s:Mutex.State)

Mutex.rs)

(not (Mutex.locked ?s:Mutex.State)))

(Mutex.locked (Mutex.enter ?i:Mutex.Pid

?s:Mutex.State)))))

Finally, we have the axioms for the exit transition:

assert* exit-axioms :=

[(i at s = cs ==> i at i exit s = cs)

(i at s = cs & j =/= i ==> j at i enter s = j at s)

(i at s = cs ==> ~ locked i exit s)

(i at s =/= cs ==> i exit s = s)]

5.3.3 Step 3. Define the desired goal and falsify it with Athena.

The desired mutual exclusion property satisfied by the algorithm is that
there is at most one process in the critical section at any given moment.
This property can be rephrased as “if there are two processes in the critical
section, then those processes are identical”.

In Athena, the desired goal is defined as follows:

define (goal-property s) :=

(forall i j . i at s = cs & j at s = cs ==> i = j)

define goal := (forall s . goal-property s)

Let us see if we can falsify the goal by examining 100 states:

> (falsify goal 100)

List: [’success

|{

?i:Pid := Pid_1

?j:Pid := Pid_2

?s:State := (enter Pid_2

(exit Pid_1

(enter Pid_1 init)))

}|]

>

Since Athena returned the above argument, it means that either the goal
does not hold, or there is something wrong with the specification. Since we
know which transitions cause the falsification of the goal, we can use the
simulate method to see the value of the observers in this problematic state.

In our case, calling simulate (p2 enter p1 exit p1 enter init), results in
the following output:

112

State after (p1 enter init):

locked: p1 at:

------------ -------------------

true cs

State after (p1 exit (p1 enter init)):

locked: p1 at:

------------ -------------------

false cs

State after (p2 enter (p1 exit (p1 enter init))):

locked: p2 at:

------------ -------------------

true cs

If we observe the values returned by the observers in this state we see that
while p2 exits the critical section it basically remains in the critical section.
Thus we understand that we there must exist an error in the definition of
the exit axioms (in particular, the first axiom was miswritten as (i at s =
cs =⇒ i at i exit s = cs) instead of (i at s = cs =⇒ i at i exit s = rs)).

After redefining the axiom, we falsify again the desired goal, and Athena
returns the term failure. Thus we proceed to the next step of our method-
ology.

5.3.4 Step 4. Start the proof of the desired goal using the Proof
Scores methodology.

We continue with the proof score approach in CafeOBJ, until we reach the
following case, in which CafeOBJ returns false:

open ISTEP .

-- arbitrary values

op k : -> Pid .

-- assumptions

-- eq c-enter(s,k) = true .

eq at(s,k) = rs .

eq locked(s) = false .

eq i = k .

eq (j = k) = false .

eq at(s,j) = cs .

-- successor state

eq s’ = enter(s,k) .

red istep1 .

close

To discard this case we must use a lemma. Based on the equations that
define this state, a possible lemma is the following: pc(S,J) = cs implies

113

locked(S) = true. To test if this lemma actually discards the problematic
case we use the following proof score, and CafeOBJ returns true.

open ISTEP .

-- arbitrary values

op k : -> Pid .

-- assumptions

-- eq c-enter(s,k) = true .

eq at(s,k) = rs .

eq locked(s) = false .

eq i = k .

eq (j = k) = false .

eq at(s,j) = cs .

-- successor state

eq s’ = enter(s,k) .

-- red istep1 .

red inv2(s,i,j) implies istep1 .

close

5.3.5 Step 5. Falsify the discovered lemma with Athena.

Next, after defining the lemma in Athena we attempt to falsify it using the
following code:

define (lemmal-property s) :=

(forall i j . j at s = cs ==> locked s)

define lemma := (forall s . lemma-property s)

> (falsify lemma 100)

Term: ’failure

Since Athena returns the term failure we continue the proof score using
this lemma.

5.3.6 Step 6. Continue the proof with the proof scores approach.

Checking the rest of the cases in CafeOBJ will result in the completion of
the proof score of the desired property. It is interesting to point out that
in our example, during the proof score of the lemma the original property
under verification was required as part of the inductive hypothesis. This
case is shown below.

open ISTEP .

-- arbitrary values

op k : -> Pid .

-- assumptions

-- eq c-exit(s,k) = true .

eq at(s,k) = cs .

eq (j = k) = false .

114

eq at(s,j) = cs .

-- successor state

eq s’ = exit(s,k) .

red inv1(s,j,k) implies istep2 .

close

5.3.7 Step 7. Create an Athena proof based on the gained in-
sights.

The above pattern in a proof score denotes a situation where simultaneous
induction must performed. Together with the case splits and lemmas used,
such information is essential to the construction of the Athena proof. Also,
by taking a closer look at the invariant and the lemma used ((i at s = cs &
j at s = cs =⇒ i = j and j at s = cs =⇒ locked s, respectively) it is
not difficult to understand that a strengthened goal can be formulated out
of them: i at s = cs & j at s = cs =⇒ i = j & locked s, which we will
verify in Athena. The new goal is defined as follows:

define (new-goal-property s) :=

(forall i j . i at s = cs & j at s = cs ==> i = j & locked s)

define new-goal := (forall s . new-goal-property s)

This strengthened goal is automatically proved, as the following shows:

> (! state-induction new)

Theorem: (forall ?s:State

(forall ?i:Pid

(forall ?j:Pid

(if (and (= (at ?i:Pid ?s:State)

cs)

(= (at ?j:Pid ?s:State)

cs))

(and (= ?i:Pid ?j:Pid)

(locked ?s:State))))))

Part of the detailed structured Athena proof of the (strengthened) goal
for our example is shown below.

Theorem 5.3. For all states s′ and processes i and j, if i and j are in
their critical sections in s′, then i = j and s′ is locked.

Proof. By structural induction on s′. When s′ is the initial state the result is
trivial because the antecedent is false, as all processes are in their remainder
sections initially. Suppose now that s′ is of the form (k enter s). Pick any
processes i and j and assume both are in their critical sections in s′. We then

115

need to show that i = j and that s′ = (k enter s) is locked. The inductive
hypothesis here is:

i at s = cs & j at s = cs ==> i = j & locked s (1)

We distinguish two cases:

1. Case 1 : k is enabled at s. Then (k at s′ = cs) and (locked s′) fol-
low from the enter axioms. Thus, we only need to show i = j. By
contradiction, suppose that i 6= j. Then either i 6= k or j 6= k. 9 So
assume first that i 6= k (the reasoning for the case j 6= k is symmetric).
Then, from the enter axioms and the assumption that k is enabled at
s, we conclude i at s′ = i at s, hence i at s = cs. Now applying the
inductive hypothesis to the above assumption, we conclude (locked s).
However, that contradicts the assumption that k is enabled at s, as
that assumption means that s is not locked.

2. Case 2 : k is not enabled at s. In that case, by the enter axioms, we
get

(k enter s = s)

i.e., s′ = s, and the result now follows directly from the inductive
hypothesis.

Finally, suppose that s′ is of the form (k exit s). Again pick any processes
i and j and assume both are in their critical sections in s′. We again need to
show that i = j and that s′ = (k exit s) is locked. The inductive hypothesis
here is the same as before, (1). We distinguish two cases again, depending
on whether or not the effective condition of the exit transition holds:

1. Case 1 : (k at s = cs). We proceed by contradiction. First, by applying
the inductive hypothesis to the conjunction of (k at s = cs) with itself,
we obtain (locked s). Also, by the exit axioms, we get

k at s′ = (k exit s) = rs

i.e.,
k at s′ = rs. (2)

The exit axioms also imply that s′ is not locked. We can now conclude
that

i 6= k (3)

because otherwise, if i = k, the assumption that i is in cs in state s′

would contradict (2). Hence, by the exit axioms, we get

i at s′ = i at s. (4)

9Clearly, if neither of these hold, i.e., if i = k and j = k, then we could also have i = j,
contradicting our hypothesis.

116

Therefore, from (4) and the assumption that i is in cs in s′, we get i
at s = cs. But now applying the inductive hypothesis to i at s = cs
and to (k at s = cs) yields i = k, contradicting (3).

2. Case 2 : (k at s 6= cs). In that case the exit axioms give (k exit s
= s, i.e., s′ = s, and the result follows directly from the inductive
hypothesis.

The above informal proof can be formulated in Athena at the same level
of abstraction and with the exact same structure. Moreover, the proof collo-
quialism “the reasoning for that case is symmetric” that appears in the enter
transition can be directly accommodated by abstracting the symmetric rea-
soning into a method and then applying that method to multiple instances.
Likewise, the treatment of enter and exit is symmetric when their effective
conditions are violated, in which case the result follows directly from the
inductive hypothesis, and this commonality too can be easily factored out
into a general method. The entire proof, along with these two methods, can
be seen below. Note that the proof doesn’t use external theorem provers.
Instead, it uses Athena’s own library chain method, which allows for limited
proof search. The chain method extends the readability benefits of equa-
tional chains into arbitrary implication chains.

This i s the ‘ ‘ s ymmet r i c ’ ’ r e a s o n i n g that appears in two
p l a c e s in the treatment o f e n t e r . We a b s t r a c t i t here
i n t o one s i n g l e g e n e r i c method M.

define (M inequality enabled-premise IH) :=

match [inequality enabled-premise] {

[(~ (i = k)) (((k at s) = rs) & (~ (locked s)))] =>

(!chain- >

[inequality

==> (enabled-premise & inequality) [augment]

==> (i at k enter s = i at s) [enter-axioms]

==> (i at s = i at k enter s) [sym]

==> (i at s = cs) [(i at k enter s = cs)]

==> (i at s = cs & i at s = cs) [augment]

==> (locked s) [IH]

==> (locked s & ~ locked s) [augment]

==> false [prop-taut]])

}

This method hand le s a l l c a s e s where the e f f e c t i v e c o n d i t i o n
i s v i o l a t e d .

define (direct-ih hyp s failed-ec IH transition-axioms) :=

match hyp {

(((i at s’) = cs) & ((j at s’) = cs)) =>

117

let {s=s’ := (!chain- >

[failed-ec ==> (s’ = s) [transition-

axioms]])}

(!chain- > [hyp ==> (i at s = cs & j at s = cs) [s=s’]

==> (i = j & locked s) [IH]

==> (i = j & locked s’) [s=s’]])

}

The main proo f :

by-induction (forall s . gp s) {

init => (!spf (gp init) (ab))

| (s’ as (k enter s)) =>

pick-any i:Pid j:Pid

let {IH := (forall i j . i at s = cs & j at s = cs

==> i = j & locked s)}

assume hyp := (i at s’ = cs & j at s’ = cs)

conclude goal := (i = j & locked s’)

(! two-cases

assume case1 := (k enabled-at s)

let {s’-locked := (!chain- > [case1

==> (locked s’) [enter-axioms]]);

s-not-locked := (!chain- > [case1

==> (~ locked s) [right-and]]);

i=j := (! by-contradiction (i = j)

assume h := (i =/= j)

let {D := {(i =/= k | j =/= k) from h}}

(! cases D

assume i=/=k := (i =/= k)

(!M i=/=k case1 IH)

assume j=/=k := (j =/= k)

(!M j=/=k case1 IH)))}

(!both i=j s’-locked)

assume case2 := (~ k enabled-at s)

(! direct-ih hyp s case2 IH enter-axioms))

| (s’ as (k exit s)) =>

pick-any i:Pid j:Pid

let {IH := (forall i j . i at s = cs & j at s = cs

==> i = j & locked s)}

assume hyp := (i at s’ = cs & j at s’ = cs)

conclude goal := (i = j & locked s’)

(! two-cases

assume case1 := (k at s = cs)

(! by-contradiction goal

assume -goal := (~ goal)

let {locked-s :=

(!chain- > [case1

==> (case1 & case1) [augment]

==> (locked s) [IH]]);

p2 := (!chain- > [case1

==> (k at s’ = rs) [exit-axioms]]);

i=/=k :=

(! by-contradiction (i =/= k)

assume h := (i = k)

118

(!chain- > [p2

==> (i at s’ = rs) [h]

==> (cs = rs) [(i at s’ = cs)]

==> (cs = rs & cs =/= rs) [augment]

==> false [prop-taut]]))}

(!chain- > [i=/=k

==> (i at s’ = i at s) [exit-axioms]

==> (i at s = cs) [(i at s’ = cs)]

==> (i at s = cs & k at s = cs) [augment]

==> (i = k) [IH]

==> (i = k & i =/= k) [augment]

==> false [prop-taut]]))

assume case2 := (k at s =/= cs)

(! direct-ih hyp s case2 IH exit-axioms))

}

5.4 Alternating Bit Protocol (ABP)

Alternating Bit Protocol is a communication protocol that provides sending
reliable messages on unreliable channels. It is often used as a case study,
especially for tools dedicated to the verification of complex systems. Even
if the protocol seems to be simple, its complete algebraic specification is
complex and its formal proof is large. We show that using our methodology,
we can better understand the specified system and also some parts of the
proving process can be automated.

We describe briefly the protocol. Two processes, Sender and Receiver,
that do not share any common memory use two channels to communicate
with each other. Sender sends repeatedly a pair < bit1, pac > of a bit and
a packet to the Receiver over one of the channels, let’s say channel1. When
Sender gets a bit from Receiver over the other channel, let’s say channel2,
if it does not equal bit1, Sender selects the next packet for sending and
alternates bit1. Receiver puts bit2 into channel2 repeatedly. When Receiver
gets a pair < b, p > such that b is the same with bit2, it stores p into a list
and alternates bit2.

Initially both channels are empty and the Sender’s bit is the same with
the Receiver’s bit. We assume that the channels are unreliable, meaning that
the data in the channels may be lost and/or duplicated, but not exchanged or
damaged. The packets sent by Sender to Receiver through channel1 are in-
dexed by the natural numbers and are of the form pac(0), pac(s0), pac(sn0),
where pac : Nat → Packet is the constructor for packets. The bits sent
by both Sender and Receiver into the communication channels are modelled
by the boolean values true and false. The communication channels and the
packets received by the Receiver are modelled by queues [97].

(a) channel1 consists of queues of pairs of bits and packets of the form
< b1, p1 >,. . . ,< bn, pn >.

(b) channel2 consists of queues of bits of the form b1, . . . , bn.

119

(c) The list of packets received by Receiver consists of packets of the
form p1, . . . , pn.

Here we do not present in details the steps of the proposed methodology,
as before, due to the complexity of the Abp protocol. We briefly present
some parts of the application of the proposed methodology in the case study.

The definitions of the state space, the transitions and the observers in
Athena are presented below.

structure Sys := init|(send1 Sys)|(rec1 Sys)|(send2 Sys)

|(rec2 Sys)|(drop1 Sys)|(dup1 Sys)|(drop2 Sys)|(dup2 Sys)

declare fifo1: [Sys] -> PFifo

declare fifo2: [Sys] -> BFifo

declare next: [Sys] -> Nat

declare list: [Sys] -> List

declare bit1: [Sys] -> Boolean

declare bit2: [Sys] -> Boolean

Transitions send1 and send2 model Sender’s sending bits & packets and
Receiver’s sending bits, respectively. Transitions rec1 and rec2 represent
Sender’s receiving bits and Receiver’s receiving pairs of bits & packets, re-
spectively.

We suppose that any data in a channel can be lost and/or duplicated.
But since only the top data in a channel is extracted, it suffices that the
effects of losing and duplicating data can be seen when the data becomes
top in the channel. Thus, drop1 represents the action of dropping the first
data of channel1, while drop2 represents the same for channel2. Finally,
transitions dup1 and dup2 model the actions of duplicating the first data of
channel1 and channel2, respectively.

The functions fifo1 and fifo2 represent channel1 and channel2, respec-
tively. The ordinal of the packet sent next by the Sender is modelled by the
function next and the packets received by the Receiver are stored in the list.
Finally, bit1 corresponds to the Sender’s bit and bit2 to the Receiver’s.

The initial-state axioms are the following: the channels in the initial
state are empty, the packet to be sent next by the Sender is indexed by the
number zero, the list of the received packets does not contain any packet
and the bits of Sender and Receiver are the same.

assert* init-axioms :=

[((fifo1 init) = empty)((fifo2 init) = empty)

((next init) = zero)((list init) = nil)

((bit1 init) = false)((bit2 init) = false))]

The axioms for the rec1 transition for example, are presented below:

assert* rec2-axioms :=

[((fifo1 (rec2 S)) = (get (fifo1 S)) if (c-rec2 S))

((fifo2 (rec2 S)) = (fifo2 S))

((bit1 (rec2 S)) = (bit1 S))

120

((bit2 (rec2 S)) <==> (not (fst (top1 (fifo1 S)))) if

(((bit2 S) = (fst (top1 (fifo1 S)))) and (c-rec2 S)))

((bit2 (rec2 S)) = (bit2 S) if ((not ((bit2 S) =

(fst (top1 (fifo1 S))))) and (c-rec2 S)))

((next (rec2 S)) = (next S))

((list (rec2 S)) = (++ (snd (top1 (fifo1 S)))(list S)) if

(((bit2 S) = (fst (top1 (fifo1 S)))) and (c-rec2 S)))

((list (rec2 S)) = (list S) if ((not ((bit2 S) = (fst (top1

(fifo1 S))))) and (c-rec2 S)))

((rec2 S) = S if (not c-rec2 S))]

When the Receiver receives a pair of bit & packet from the Sender
(through channel1) the following things happen; the first element from chan-
nel1 is removed, channel2, bit1 and next stay the same, bit2 changes (if it
was true it becomes false and the opposite) if it is the same with bit1 and
the effective condition of the transition holds (bit2 stays the same if it is
not the same with bit1 and the effective condition of the transition holds),
the packet sent by the Sender is stored in the list if bit2 is the same with
bit1 and the effective condition of the transition holds (list stays the same
if bit2 is not the same with bit1 and the effective condition of the transition
holds), and finally, the state does not change if the effective condition of the
transition does not hold.

One desired property satisfied by the communication protocol, is the
following; when Receiver receives the nth packet:

- Receiver has received the n+ 1 packets p0, . . . , pn in this order,

- each pi for i = 0, . . . , n has been received only once, and

- no other packets have been received.

The property is called the reliable communication property in the liter-
ature. The definition of this property in Athena terms is shown in the box
below10:

define (inv1 s) :=

((bit1 s = bit2 s ==> mk next s = packet next s ++ list s) &

(bit1 s =/= bit2 s ==> mk next s = list s))

Following the proposed methodology presented before, and after getting
all the insightful information about the system using the Proof Scores ap-
proach we verified the desired goal in Athena.

Some interesting points of the proof we would like to present are the
following: In order to prove the desired goal, ten lemmas were used which
were discovered using the proof scores approach. In order to prove the
required lemmas we used simultaneous induction (another insight gained by
the proof scores approach). The lemmas and their proof schema are shown
below.

10Where mk(n) = pac(n) . . . pac(0).

121

define (inv2 s) :=

((non-empty channel2 s) ==> bit1 s = top channel2 s | bit2 s

= top channel2 s)

define (inv3 s) :=

(non-empty channel1 s & bit2 s = fst top channel1 s ==> bit1 s

= fst top channel1 s & packet next s = snd top channel1 s)

define (inv4 s) :=

(forall ?bit . non-empty channel2 s & bit1 s =/= top channel2 s

& ?bit in channel2 s ==> top channel2 s = ?bit)

define (inv5 s) :=

(forall ?bit . non-empty channel2 s & ?bit in channel2 s & bit1

s =/= ?bit ==> bit2 s = ?bit)

define (inv6 s) :=

(forall ?pair . non-empty channel1 s & bit2 s = fst top channel1

s & ?pair in channel1 s ==> top channel1 s = ?pair)

define (inv7 s) :=

(forall ?pair . non-empty channel1 s & ?pair in channel1 s

& bit2 s = fst ?pair ==> bit1 s = fst ?pair & packet next s

= snd ?pair)

define (inv8 s) :=

(forall ?bfifo1 ?bfifo2 ?bit1 ?bit2 ?bit3 .

channel2 s = ?bfifo1 ?bit1 ++ ?bit2 ++ ?bfifo2 & not ?bit1

= ?bit2 ==> ((? bit3 in ?bfifo2 ==> ?bit2 = ?bit3) & ?bit2

= bit2 s))

define (inv9 s) :=

(forall ?pfifo1 ?pfifo2 ?pair1 ?pair2 ?pair3 .

channel1 s = ?pfifo1 ?pair1 ++ (?pair2 ++ ?pfifo2) & ?pair1

=/= ?pair2 ==> ((? pair3 in ?pfifo2 ==> ?pair2 = ?pair3) &

?pair2 = bit1 s

with packet next s))

define (inv10 s) :=

(forall ?bit . bit1 s = bit2 s ==> ?bit in channel2 s ==>

?bit = bit2 s)

define (inv11 s) :=

(forall ?pair . bit1 s =/= bit2 s ==> ?pair in channel1 s ==>

?pair = bit1 s with packet next s)

ABP |- {inv2 & inv3 & inv4 & inv5 & inv6 & inv7 & inv9 & inv10

& inv11 & inv8}

ABP + {inv2 & inv3 & inv4 & inv5 & inv6 & inv7 & inv9 & inv10

122

& inv11 & inv8} |- inv1

During the proof of the initial goal the most difficult parts were transi-
tions rec2 and rec1 whereas in the proof of the ten lemmas the most difficult
cases were those of transitions rec2 and send1.

Part of the detailed structured Athena proof of the desired goal is pre-
sented below.

by-induction (forall ?s . inv1 ?s) {

init => (!prove (inv1 init))

| (state as (rec1 s)) =>

let {

part1 := conclude (bit1 state = bit2 state

==> mk next state = packet next state ++ list

state)

assume hyp1 := (bit1 state = bit2 state)

{

goal1a := (mk next state = packet next

state ++ list state);

case1 := assume case1 := (channel2 s = empty) {

goal1a from (ab)

};

case2 := assume case2 := (not channel2 s = empty) {

goal1a from (ab)

};

goal1a from case1 , case2

};

part2 := conclude (bit1 state =/= bit2 state

==> mk next state = list state)

assume hyp2 := (bit1 state =/= bit2 state) {

goal1b := (mk next state = list state);

case1 := assume case1 := (channel2 s = empty) {

goal1b from (ab)

};

case2 := assume case2 := (not channel2 s = empty) {

p1 := (exists ?b ?bs . channel2 s = ?b ++ ?bs) from

(ab);

pick-witnesses x y for p1 {

case2a := assume case2a := (bit1 s = x) {

goal1b from (ab)

};

case2b := assume case2b := (not bit1 s = x) {

case2b-1 := assume case2b-1 :=

(bit2 s = x) {

goal1b from (ab)

};

case2b-2 := assume case2b-2 :=

(not bit2 s = x) {

goal1b from (ab)

};

goal1b from case2b-1 , case2b-2

};

123

goal1b from case2a , case2b

} };

goal1b from case1 , case2

} }

(! derive (inv1 state) [part1 part2])

| (state as (rec2 s)) =>

...

Finally, in order to check if any part of the proof can be done automat-
ically, we defined another ATP method (using SPASS), called “do”, which
takes as input the goal you’re trying to prove along with the state-transition
operator it involves. Roughly speaking, this method knows the effective
condition and transition axioms for each operator, and it uses that to help
ATP’s tasks. Using do-method, the following parts of the goal were proven
completely automatically.

by-induction (forall ?s . inv1 ?s) {

...

| (state as (drop1 s)) => (!do (inv1 state) drop1)

| (state as (drop2 s)) => (!do (inv1 state) drop2)

| (state as (dup1 s)) => (!do (inv1 state) dup1)

| (state as (dup2 s)) => (!do (inv1 state) dup2)

| (state as (send2 s)) => (!do (inv1 state) send2)

| (state as (send1 s)) => (!do (inv1 state) send1)

}

Some approaches that deal with the automation of algebraic specifica-
tion methods are briefly presented; A methodology for proving inductive
properties of OTSs that aims at automating the proof scores approach to
verification, can be found in [97]. In this paper, authors revise the entail-
ment system of proof scores and enrich it with proof rules and tactics. Also,
a prototype tool (Constructor-based Inductive Theorem Prover - CITP)
implementing the methodology is demonstrated. CITP is implemented in
Maude. Another interesting approach is the tool Hets - the Heterogeneous
Tool Set [89] that offers parsing, static analysis and proof management.
Hets has among others, connections with the algebraic specification lan-
guages Maude and CASL and external theorem provers and is based on a
graph of logics and logic translations.

In the following we summarize the benefits of the proposed approach and
we compare the verification of the properties of the presented case studies,
using the proposed methodology and using the proof scores approach.

One advantage of the proposed methodology is that you can use the
model-checking tools of Athena to obtain some first insights about the spec-
ified system and thus save valuable time. Using the CafeOBJ processor,
model checking can be used when the system is expressed in terms of rewrit-
ing logic but not directly in equational specifications. Also, the simulate pro-
cedure, can become really helpful in understanding how the specified system
behaves. Especially when you deal with a complex system where it is almost

124

impossible to “follow” its execution process, such visualization techniques
can provide a clear overview of the system and help in the discovery of pos-
sible errors. In addition, the structured proofs supported by Athena can
provide valuable information and explanation as to why a property is in-
variant or not for the specified system. Another important advantage of
our approach is that Athena does a thorough check of the overall proof and
provides a guarantee that if and when you get a theorem, that result fol-
lows logically from the a.b. and the primitive methods (which in this case
include the external ATP). This is really helpful because on the other hand,
with CafeOBJ’s proof scores approach there is much greater room for human
oversight. Finally, the automation in the verification is another advantage of
the ‘Cafe2Athena’ methodology. In the case of the Mutex algorithm the de-
sired goal was proven completely automatically. Also, when we used Athena
to verify the Alternating Bit Protocol the number of case analyses needed
for proving the desired goal was 20 and for proving the additional lemmas
was 318. On the other hand, with the Proof Scores approach the number
of the required case analyses was 24 and 496, respectively. This makes the
total number of case analyses needed in Athena significantly smaller.

125

Conclusions and Future Directions

In chapter 3, we first presented a Hidden (Sorted) Algebra semantics for
production (PR), event condition action (ECA) and knowledge representa-
tion rules (KR) as well as for complex event processing, with the goal to
have a unifying theory for reactive rules and appropriate tool support for
it, built using algebraic specification languages (like CafeOBJ or Maude).
Next, we presented a framework for formally specifying reactive rules with
the help of the OTS/CafeOBJ method. This framework can express complex
systems behaviour while capturing the semantics of the underlying reactive
rules, and can be used for the verification of safety properties reactive rule-
based agents should meet. In addition, we proposed a methodology, based
on rewriting logic specifications written in CafeOBJ, for reasoning about
structural errors of systems whose behaviour is expressed in terms of reac-
tive rules and verifying safety properties within the same framework. We
then compared the proposed methodologies, based on the different logical
systems, through their application in a real-life intelligent agent. Finally, we
developed a tool in order to automate the transformation from reactive rules
into rewrite transition rules in order to make the verification of reactive rule
systems possible for inexperienced users.

Verification support for reactive rule bases can lead to the creation of
on line libraries and the definition of operators for combining these rules in
a way that preserves the desired properties. Also the formal proofs of the
verified properties are executable and could be used as trust credentials for
the rule bases agents use, thus allowing the creation of new trust policies
and models. Finally, verification techniques could be applied to rule en-
gines and prove the correctness of the implementation of the rules. In the
future, we intend to extend the framework in order to be able to model op-
erational reactive systems that need to define an optimized proof-theoretic
and operational semantics. Also we plan to integrate the proposed tool and
methodologies with other specification systems, like Maude for example,
so as to have better tool support and broader use. Finally, we intend to
use similar formal techniques in order to verify an open-source rule engine
implementation. Thus together with the proposed framework, end-to-end
validation will be enabled.

In chapter 4, we argued that due to the increased development of com-
plex context-aware applications in critical domains it is important to be
able to formally analyse their behaviour. These systems present new chal-
lenges compared to traditional systems and addressing context awareness
and self adaptation in a consistent and integrated manner is not a trivial
task. For this reason we presented an algebraic framework for their formal
specification using Observational Transition Systems (OTSs) specified in the
CafeOBJ algebraic specification language.

The proposed framework takes advantage of CafeOBJ’s support for para-

126

metric modules and behavioral object composition method and permits the
definition of the core functionality of context-aware adaptive systems as
library which can then be used to instantiate a particular system thus re-
ducing the specification effort. It also allows a high degree of modularization
which permits the refinement of the components without needing to refine
the whole specification. In addition, it represents the relationships between
the components of such a system explicitly, which is highly desired for the
adoption of the framework in the development of real systems. This method-
ology supports also the verification of the design of such systems, and can
be an effective approach to obtaining verified context-aware software as it
permits the re usability not only of the specification code but also of the
proofs. This is a critical property because in complex applications, scala-
bility of the methodology becomes a serious concern. As future work, we
intend to conduct more case studies using our framework and to expand the
created library (e.g. predefine the interaction of different entity systems).

In the last chapter, we proposed an integration of CafeOBJ and Athena
environments, with the aim to exploit both the nice properties of CafeOBJ
specifications and the soundness and automation in verification offered by
Athena, and demonstrated our approach with illustrating case studies. Also
we presented several features of the methodology that can be used to: better
understand the specified system, model-check desired properties and verify
them via theorem proving, both automatically and in a structured and more
detailed way. The proposed method aims at combining the strengths of
the two languages, by working with OTSs and CafeOBJ but also taking
advantage of formal-methods techniques that have traditionally lied outside
of the rewriting community.

One future direction is to investigate possible connections with tools in-
corporating various provers and different specification languages, like Hets
for example. Our approach could be used as a vehicle for integrating other al-
gebraic specification methods with more conventional theorem-proving sys-
tems based on first- or higher-order logic. Also, when rewriting fails during
a proof obligation in a given “proof score” (i.e., when the two sides of a
desired identity do not reduce to the same normal form by using all avail-
able equations as left-to-right rewrite rules), systems such as CafeOBJ will
inform the user of how far the two sides could be rewritten, and this feed-
back often suggests lemmas that are necessary to complete the proof. As
future work, we plan to simulate this process in Athena by translating back
from Athena to CafeOBJ in order to help the formulation of intermediate
lemmas.

127

Appendix

- K. Ksystra, N. Triantafyllou, K. Barlas and P. Stefaneas, “An Alge-
braic Specification of Social Networks”, Proceedings SQM 2012. Soft-
ware Quality Management Conference, Editors: E. Berki, J. Valtanen,
P. Nykanen, M. Ross, G. Staples, K. Systa, British Computer Soci-
ety Quality SG SQM/INSPIRE Conference, Tampere, Finland, pp.
135-146, 2012 (Conference)

- K. Ksystra, N. Triantafyllou and P. Stefaneas, “On the Algebraic
Semantics of Reactive Rules”. Proceedings RuleML 2012. Antonis
Bikakis, Adrian Giurca (Eds.): Rules on the Web: Research and Ap-
plications - 6th International Symposium, RuleML 2012, Montpellier,
France, August 27-29, 2012, pp. 136-150, Lecture Notes in Computer
Science. Springer 2012 (Conference) [Chapter 3]

- K. Ksystra, N. Triantafyllou, P. Stefaneas and P. Frangos: “An Al-
gebraic Framework for Modeling of Reactive Rule-Based Intelligent
Agents”. Proceedings SOFSEM 2014. Viliam Geffert, Bart Preneel,
Branislav Rovan, Julius Stuller, A Min Tjoa (Eds.): Theory and Prac-
tice of Computer Science - 40th International Conference on Current
Trends in Theory and Practice of Computer Science, Nový Smokovec,
Slovakia, January 26-29, 2014, pp. 407-418, Lecture Notes in Com-
puter Science 8327, Springer 2014 (Conference) [Chapter 3]

- K. Ksystra, N. Triantafyllou and P. Stefaneas, “On Verifying Reac-
tive Rules Using Rewriting Logic”. Proceedings RuleML 2014. Anto-
nis Bikakis, Paul Fodor, Dumitru Roman (Eds.): Rules on the Web.
From Theory to Applications - 8th International Symposium, RuleML
2014, Co-located with the 21st European Conference on Artificial In-
telligence, ECAI 2014, Prague, Czech Republic, August 18-20, 2014,
pp 67-81, LNCS Springer 2014 (Conference) [Chapter 3]

- P. Stefaneas, I. Ouranos, N. Triantafyllou and K. Ksystra, “Some En-
gineering Applications of the OTS/CafeOBJ Method”. Proceedings
SAS 2014. Specification, Algebra, and Software. A Festschrift Sym-
posium in Honor of Kokichi Futatsugi 2014 Kanazawa, Japan. eds: S.
Iida, J. Meseguer, K. Ogata, pp. 541-559, Springer LNCS Festschrift
2014 (Conference)

- N. Triantafyllou, K. Ksystra, P.Stefaneas, A. Kalampakas “Towards
Formal Representation and Comparison of Video Content Using Alge-
braic Semiotics”. Proceedings SMAP 2012. 9th International Work-
shop on Semantic and Social Media Adaptation and Personalization,
Corfu, November 6-7, 2014, pp. 48-53, IEEE 2014 (Conference)

128

- K. Ksystra, P. Stefaneas and P. Frangos, “An Algebraic Approach for
the Verification of Context-Aware Adaptive Systems”, International
Journal of Software Engineering and Knowledge Engineering, World
Scientific, Volume 25, Issue 07, pp. 1105-1128, September 2015 (Jour-
nal) [Chapter 4]

- K. Ksystra and P. Stefaneas, “Formal analysis and verification support
for reactive rule-based Web agents”. International Journal of Web
Information Systems, Volume 12, Issue 4, pp. 418-447, 2016 (Journal)
[Chapter 3]

- K. Arkoudas, K. Ksystra, N. Triantafyllou and P. Stefaneas, “Inte-
grating Athena with Algebraic Spcifications” Preliminary Proceed-
ings 22nd WADT, International Workshop on Algebraic Development
Techniques, 4-7 September 2014, in memoriam of Joseph Goguen,
Sinaia, Romania, Technical Report Simion Stoilow Institute of Math-
ematics, Romanian Academy, eds R. Diaconescu, M. Codescu, I Tutu.
pp 12-13, Sinaia 2014 (Technical Report) [Chapter 5]

- K. Ksystra, N. Triantafyllou and P. Stefaneas, “Combining Algebraic
Specifications with First-Order Logic via Athena”, to appear in Alge-
braic Modeling of Topological and Computational Structures and Ap-
plications, Book at Springer Proceedings in Mathematics and Statis-
tics (Book) [Chapter 5]

129

References

[1] Formal methods, http://users.ece.cmu.edu/koopman/

[2] CafeOBJ Algebraic Specification and Verification, https://cafeobj.org/

[3] Professor Kokichi Futatsugi Personal Page, http://www.jaist.ac.jp/ ko-
kichi/

[4] Berners-Lee, T., Hendler, J., Lassila, O. (2001) The Semantic Web.
Scientific American 284, 34-43.

[5] Franklin, S. and Graesser, A., Is it an agent or just a program?: a
taxonomy for autonomous agents”, in: Proceedings of the third in-
ternational workshop on agent theories, architectures and languages,
Springer-Verlag, 1996.

[6] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, John S. Fitzger-
ald: Formal methods: Practice and experience. ACM Comput. Surv.
41(4) (2009)

[7] R. Diaconescu and K. Futatsugi, CafeOBJ report: the language, proof
techniques, and methodologies for object-oriented algebraic specification
(AMAST series in computing, Singapore, World Scientific, 1998)

[8] J. A. Goguen and G. Malcolm, A hidden agenda, Technical Report No.
CS97-538 (Ed.: University of California at San Diego, 1997).

[9] Razvan Diaconescu and Kokichi Futatsugi. Behavioural coherence in
object-oriented algebraic specification. J. Universal Computer Science,
6(1):74–96, 2000. First version appeared as JAIST Technical Report
IS-RR-98-0017F, June 1998.

[10] Rolf Hennicker and Michel Bidoit. Observational logic. In A. M. Hae-
berer, editor, Algebraic Methodology and Software Technology, number
1584 in LNCS, pages 263– 277. Springer, 1999. Proc. AMAST’99.

[11] Goguen, J.A., Diaconescu, R.: Towards an Algebraic Semantics for the
Object Paradigm . In: Ehrig, H., Orejas, F. (eds.) 10th Workshop on
Abstract Data Types (1994)

[12] R. Diaconescu and K. Futatsugi, Logical foundations of cafeobj, J. The-
oretical Computer Science, 285(2) (2002) 289–318.

[13] Iida, S., Futatsugi, K., Diaconescu, R.: Component based algebraic
specifications - behavioural specification for component based software
engineering. In: In Seventh OOPSLA Workshop on Behavioral Seman-
tics of OO Business and System Specification. (1999)

130

[14] S. Iida, M. Matsumoto, R. Diaconescu, K. Futatsugi, and D. Lucanu,
Concurrent Object Composition in CafeOBJ, Technical Report No. IS-
RR-98-0009S (Ed.: Japan Advanced Institute of Science and Technol-
ogy, 1998)

[15] R. Diaconescu, Behavioural specification for hierarchical object compo-
sition, J. Theoretical Computer Science, 343(3) (2005) 305–331.

[16] Diaconescu, R., Futatsugi, K., Iida, S.: Component-based algebraic
specification and verification in cafeobj. In: Proceedings of the Wold
Congress on Formal Methods in the Development of Computing
Systems-Volume II. FM ’99, London, UK, UK, Springer-Verlag (1999),
1644-1663

[17] Goguen J., A.: Order-Sorted Algebra I: Equational Deduction for Mul-
tiple Inheritance, Overloading, Exceptions and Partial Operations. The-
oretical Computer Science, 217–273 (1992)

[18] OMG, Unified modeling language specification version 1.4, 2001.

[19] Futatsugi K., Gaina, D., Ogata, K.: Principles of proof scores in
CafeOBJ. Theoretical Computer Science 464, 90–112 (2012)

[20] Ogata, K., Futatsugi, K.: Theorem Proving Based on Proof Scores
for Rewrite Theory Specifications of OTSs. Specification, Algebra, and
Software, Essays Dedicated to Kokichi Futatsugi, LNCS 8373, 630-656
(2014).

[21] Meseguer, J.: Conditional rewriting logic as a unified model of concur-
rency. Theoretical Computer Science, 96(1):73–155, (1992).

[22] Diaconescu, R., Futatsugi, K., and Iida, S.: CafeOBJ Jewels. In: Futat-
sugi, K., Nakagawa, A.T., and Tamai, T., editors, CAFE: An Industiral-
Strength Algebraic Formal Method, Elsevier, 33–60 (2000)

[23] Ogata, K., Futatsugi, K.: Proof Scores in the OTS/CafeOBJ Method.
In: 6th IFIP WG6.1 Intl. Conf. on Formal Methods for Open Object-
Based Distributed Systems, pp. 170–184. LNCS 2884, Springer (2003)

[24] K. Ogata and K. Futatsugi, Some tips on writing proof scores in the ot-
s/cafeobj method, Proc. Conf. on Algebra, Meaning, and Computation
4060 (2003) 596–615.

[25] Ogata K. and Futatsugi K., Compositionally Writing Proof Scores of
Invariants in the OTS/CafeOBJ Method, Journal of Universal Com-
puter Science, 19(6) (2013) 771–804.

131

[26] K. Futatsugi, J. A. Goguen, and K. Ogata, Verifying Design with Proof
Scores, Proc. Conf. Verified Software: Theories, Tools, Experiments,
Zurich, Switzerland, LNCS, (2005) 277–290.

[27] B. Berstel, P. Bonnard, F. Bry, M. Eckert, and P. Patranjan, Reactive
Rules on the Web, Reasoning Web Volume 4636 of the series Lecture
Notes in Computer Science pp 183-239 (2007)

[28] Paschke, A., Kozlenkov, A., Boley, H.: A Homogeneous Reaction Rule
Language for Complex Event Processing. In: VLDB ’07 (2007)

[29] Paschke, A., Boley, H.: Rules Capturing Events and Reactivity. In:
Giurca, A., Gasevic, D., Taveter, K. (eds.) Handbook of Research on
Emerging Rule-Based Languages and Technologies: Open Solutions and
Approaches., IGI Publishing, May 2009, pp. 215–252 (2009)

[30] Boley, H., Paschke, A., Shafiq, O.: RuleML 1.0: The Overarching Spec-
ification of Web Rules. In: RuleML’10 Proceedings of the 2010 inter-
national conference on Semantic web rules (2010)

[31] Carlson, J., Lisper, B.: An event detection algebra for reactive systems.
In: 4th ACM international conference on Embedded software (2004)

[32] Kowalski, R.A., Sergot, M.J.: A logic-based calculus of events. J. New
Generation Computing. 4, 67–95 (1986)

[33] McCarthy, J., Hayes, P.J.: Some Philosophical Problems from the
Standpoint of Artificial Intelligence . In: Machine Intelligence 4, Michie,
D, Meltzer, B. (eds.) Edinburg University Press, pp 463–502 (1969)

[34] Maude Homepage, http://maude.cs.uiuc.edu/

[35] Ksystra, K., Triantafyllou, N., Stefaneas, P.: On the Algebraic Seman-
tics of Reactive Rules. 6th International Symposium, RuleML 2012,
Springer, (2012) 136–150

[36] Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach.
Prentice Hall; 1st edition (1995)

[37] Gilbert, D.: Intelligent Agents: The Right Information at the Right
Time. IBM Intelligent Agent White Paper

[38] FIPA (Foundation for Intelligent Physical Agents), www.fipa.org

[39] Badica, C., Braubach, L., Paschke, A.: Rule-based Distributed and
Agent Systems. 5th international conference on Rule-based reasoning,
programming, and applications, RuleML 2011, Springer, (2011) 3–28

132

[40] Ericsson, A., Berndtsson, M., Pettersson, P.: Verification of an in-
dustrial rule-based manufacturing system using REX 1st International
Workshop on Complex Event Processing for Future Internet, iCEP-FIS,
(2008)

[41] Paschke, A., Boley, H., Zhao, Z., Teymourian, K., and Athan, T.: Re-
action RuleML 1.0: Standardized Semantic Reaction Rules. 6th In-
ternational Symposium, RuleML 2012, LNCS 7438, Springer, (2012)
100–119

[42] Reaction RuleML, http://ruleml.org/reaction

[43] Paschke, A.: ECA-RuleML: An Approach combining ECA Rules with
temporal interval-based KR Event/Action Logics and Transactional
Update Logics. ECA-RuleML Proposal for RuleML Reaction Rules
Technical Goup, (2005)

[44] Paschke, A., and Boley, H.: Rules Capturing Events and Reactivity.
Giurca, A., Gasevic, D., Taveter, K. (eds.) Handbook of Research on
Emerging Rule-Based Languages and Technologies: Open Solutions and
Approaches., IGI Publishing, (2009) 215–252

[45] Paschke, A.: ECA-LP/ECA-RuleML: A Homogeneous Event-
Condition-Action Logic Programming Language. Int. Conf. on Rules
and Rule Markup Languages for the Semantic Web, Athens, Georgia,
USA, (2006)

[46] Teymourian, K., and Paschke, A.: Semantic Rule-Based Complex
Event Processing. International Symposium, RuleML 2009, LNCS 5858,
Springer, (2009) 82–92

[47] Liua, J., Zhangb, J., and Hub, J.: A case study of an inter-enterprise
workflow-supported supply chain management system. Information and
Management 42, (2005) 441–454

[48] cafeobj@ntua.blogspot.com

[49] Vlahavas, I., Bassiliades, N.: Parallel, object-oriented, and active
knowledge base systems. Kluwer Academic Publishers, Norwell, MA,
USA, (1998)

[50] Paschke, A., and Kozlenkov, T.: Rule-Based Event Processing and
Reaction Rules. International Symposium, RuleML 2009, LNCS 5858,
Springer, (2009) 53–66

[51] Xudong, H., Chu, C., Yang, H., and Yang, S. J. H.: A New Approach to
Verify Rule-Based Systems Using Petri Nets. Information and Software
Technology, vol. 45, issue 10, (2003) 663–669

133

[52] Patkos, T., Chrysakis, I., Bikakis, A., Plexousakis, D., Antoniou, G.:
A Reasoning Framework for Ambient Intelligence. S. Konstantopoulos
et al. (Eds.): SETN 2010, LNAI 6040, Springer-Verlag, (2010) 213–222

[53] Ogata K., Futatsugi, K.: Proof Score Approach to Analysis of Elec-
tronic Commerce Protocols, Int. J. Soft. Eng. Knowl. Eng., 20(253)
(2010) 253–287.

[54] Ogata, K., Futatsugi, K.: Proof score approach to verification of live-
ness properties. IEICE Transactions E91-D, 2804–2817 (2008).

[55] Ksystra, K., Stefaneas, P., Frangos, P.: An Algebraic Framework for
Modeling of Reactive Rule-Based Intelligent Agents. SOFSEM: Theory
and Practice of Computer Science - 40th International Conference on
Current Trends in Theory and Practice of Computer Science, LNCS,
407-418 (2014).

[56] Jin X., Lembachar Y., Ciardo G.: Symbolic verification of ECA
rules. International Workshop on Petri Nets and Software Engineer-
ing (PNSE’13) and International Workshop on Modeling and Business
Environments (ModBE’13), 41-59 (2013)

[57] Fors, T.: Visualization of rule behaviour in active databases. VDB,
215–231 (1995).

[58] Benazet, E., Guehl, H., Bouzeghoub, M.: Vital: A visual tool for anal-
ysis of rules behaviour in active databases. Second International Work-
shop on Rules in Database Systems, Springer-Verlag, 182–196 (1995).

[59] Berstel, B., Leconte, M. : Using Constraints to Verify Properties of Rule
Programs. ICST Third International Conference on Software Testing,
Verification and Validation, Paris, France (2010).

[60] K. Ksystra and P. Stefaneas, Formal analysis and verification support
for reactive rule-based Web agents. International Journal of Web Infor-
mation Systems, Volume 12, Issue 4, pp. 418-447, 2016

[61] K. Ksystra, N. Triantafyllou and P. Stefaneas, “On Verifying Reac-
tive Rules Using Rewriting Logic”. Proceedings RuleML 2014. Anto-
nis Bikakis, Paul Fodor, Dumitru Roman (Eds.): Rules on the Web.
From Theory to Applications - 8th International Symposium, RuleML
2014, Co-located with the 21st European Conference on Artificial Intel-
ligence, ECAI 2014, Prague, Czech Republic, August 18-20, 2014, pp
67-81, LNCS Springer 2014

[62] M. Janik, A. Nanda, R. Rabbani, Semantic Context Specification.

134

[63] [https://www.interaction-design.org/literature/book/the-
encyclopedia-of-human-computer-interaction-2nd-ed/context-aware-
computing-context-awareness-context-aware-user-interfaces-and-
implicit-interaction]

[64] N. Triantafyllou, Software Engineering Applications of the OTS/-
CafeOBJ Algebraic Specification Method, Phd Thesis (National Tech-
nical University of Athens, 2014).

[65] I. Ouranos, K. Ogata, and P. Stefaneas, TESLA source authentication
protocol verification experiment in the Timed OTS/CafeOBJ method:
Experiences and Lessons Learned, IEICE Transactions, Tokyo, (2014),
Accepted for publication.

[66] P. Stefaneas, I. Ouranos, N. Triantafyllou, and K. Ksystra, Some Engi-
neering Applications of the OTS/CafeOBJ Method, Proc. Conf. Spec-
ification, Algebra, and Software A Festschrift Symposium in Honor of
Kokichi Futatsugi, Japan, LNCS, Springer, (2014), Accepted for publi-
cation.

[67] M. U. Iftikhar and D. Weyns, A Case Study on Formal Verification
of Self-Adaptive Behaviors in a Decentralized System, in Proc. Conf.
on Foundations of Coordination Languages and Self-Adaptation, UK,
(2012) 45–62.

[68] D. Weyns, S. Malek, and J. Andersson, FORMS: a formal reference
model for self-adaptation, in Proc. Conf. on Autonomic computing,
USA (2010) 205–214.

[69] A. Coronato and G. De Pietro, Formal Specification and Verification
of Ubiquitous and Pervasive Systems, J. ACM Transactions on Au-
tonomous and Adaptive Systems 6(1) (2011) 1–9.

[70] N. Khakpour and S. Jalili, PobSAM: Policy-based Managing of Actors
in Self-Adaptive Systems, in 6th Int. Workshop on Formal Aspects of
Component Software, Eindhoven, (2009) 129–143.

[71] K. Schneider, T. Schuele, and M. Trapp, Verifying the adaptation be-
havior of embedded systems, in Proc. Conf. on Self-adaptation and
self-managing systems, China (2006) 16–22.

[72] M. Hussein, J. Han, and A. Colman A, Specifying and Verifying the
Context-aware Adaptive Behavior of Software Systems, Technical Re-
port No. C3-516-03 (Ed.: Australia: Swinburne University of Technol-
ogy, 2010).

135

[73] R. Adler, I. Schaefer, T. Schuele, and E. Vecchié, From Model-Based
Design to Formal Verification of Adaptive Embedded Systems, in Proc.
International Conf. on Formal Engineering Methods, USA (2007) 76–
95.

[74] A. Rakib and R. U. Faruqui, A Formal Approach to Modelling and
Verifying Resource-Bounded Context-Aware Agents, in Proc. Conf. on
Context-Aware Systems and Applications, Vietnam (2012) 86–96.

[75] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C., Composing
Adaptive Software, J. Computer, 37(7) (2004), 56–64.

[76] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL: A Proof
Assistant for Higher-Order Logic, LNCS, Springer 2283 (2002).

[77] Y. Bertot and P. Casteran, Interactive Theorem Proving and Pro-
gram Development Coq’Art: The Calculus of Inductive Constructions,
Springer, (2004).

[78] Seino, T., Ogata, K., Futatsugi, K.: A toolkit for generating and dis-
playing proof scores in the OTS/CafeOBJ method, ENTCS, 147(1)
(2006) 57–72.

[79] Nakano, M., Ogata, K., Nakamura, M., Futatsugi, K.: Creme: an Au-
tomatic Invariant Prover of Behavioral Specifications, Int. J. Soft. Eng.
Knowl. Eng., 17(6) (2007) 783–804.

[80] K. Ogata, M. Nakano, M. Nakamura, and K. Futatsugi, Chocolat/
SMV: A translator from CafeOBJ into SMV, in Proc. Int. Conf. on Par-
allel and Distributed Computing Applications and Technologies, China
(2005) 416–420.

[81] W. Kong, K. Ogata, T. Seino, and K. Futatsugi, A lightweight integra-
tion of theorem proving and model checking for system verification, in
Proc. 19th Asia-Pacific Conf. on Software Engineering, Taiwan (2005)
59–66.

[82] Arkoudas, K.: Athena, proofcentral.org, (2004)

[83] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer,
and J. Quesada.: Maude: Specification and Programming in Rewriting
Logic. Maude System documentation. March, 1999.

[84] CASL, Web page, http://www.casl.umd.edu/about

[85] HOL/Isabelle, Web page, http://isabelle.in.tum.de/library/HOL/

[86] T. Nipkow: Programming and Proving in Isabelle/HOL. Technical Re-
port, 2014.

136

[87] S. Autexier, T. Mossakowski.: Integrating HOL-CASL into the De-
velopment Graph Manager MAYA. Frontiers of Combining Systems.
Lecture Notes in Computer Science Volume 2309, 2002, 2–17.

[88] Hets, Web page, http://theo.cs.uni-magdeburg.de/Research/Hets.html

[89] M. Codescu, F. Horozal, M. Kohlhase, T.l Mossakowski, F. Rabe, K.
Sojakova.: Towards Logical Frameworks in the Heterogeneous Tool Set
Hets. In Till Mossakowski, Hans-Jörg Kreowski (Eds.), Recent Trends
in Algebraic Development Techniques, 20th International Workshop,
WADT 2010, Vol. 7137, pp. 139–159, Lecture Notes in Computer Sci-
ence. Springer.

[90] Musser, D.: Understanding Athena Proofs.

[91] Vampire, Web page, www.vprover.org/

[92] Spass, Web page www.spass-prover.org/

[93] F. J. Pelletire. A Brief History of Natural Deduction. History and Phi-
losophy of Logic, 20:1-31, 1999.

[94] T. Mossakowski and A. Tarlecki, A Relatively Complete Calculus for
Structured Heterogeneous Specifications, In: Foundations of Software
Science and Computation Structures, FOSSACS 2014, LNCS 8412.

[95] M. Aiguier, F. Barbier,: An institution-independent Proof of the Beth
Definability Theorem.

[96] Algebraic modeling of topological and computational structures
(AlModTopCom), http://www.math.ntua.gr/ sofia/ThalisSite/publi-
cations.html

[97] Gaina, D., Lucano, D., Ogata, K., Futatsugi, K.: On Automation
of OTS/CafeOBJ Method. In: Specification, Algebra, and Software,
LNCS 8373, 578-602 (2014)

[98] N. Preining, Algebraic specifications and Functional programming with
CafeOBJ, Technical Report, JAIST 2015.

[99] I. Cafezeiro, J. Viterbo, A. Rademaker, E. H. Haeusler, and M. Endler,
A Formal Framework for Modeling Context-Aware Behavior in Ubiq-
uitous Computing.

[100] Ogata K., Futatsugi K.: Modeling and verification of real-time systems
based on equations. Science of Computer Programming, 66, pp. 162–180
(2007)

137

[101] Diaconescu, R., Goguen, J., Stefaneas, P.: Logical support for modu-
larization. In: Second annual workshop on Logical Environments (1993)

[102] Goguen, J., Winkler, T., Meseguer, J., Futatsugi, K., Jouannaud, J.P.:
Introducing OBJ. Software Engineering with OBJ: Algebraic Specifica-
tion in Action. Kluwer (2000).

138

	Introduction
	Preliminaries - Theoretical Background
	Algebraic specifications
	Behavioral specification
	Hidden Algebra
	CafeOBJ
	The behavioral specification paradigm
	Behavioral Object Composition
	Basic syntax and notation
	Equational and rewriting logic

	Observational Transition Systems
	Timed Observational Transition Systems
	The OTS/CafeOBJ methodology

	Reactive Rules
	On the Algebraic Semantics of Reactive Rules
	Production Rules and OTS semantics
	Event Condition Action (ECA) Rules and OTS semantics
	Complex Events and OTS semantics
	Knowledge Representation Rules and OTS semantics

	An Algebraic Framework for Modeling of Reactive Rule-based Intelligent Agents
	Production Rules in CafeOBJ
	Event Condition Action Rules in CafeOBJ
	Complex Events and CafeOBJ
	A Supply Chain Management System

	On Verifying Reactive Rules Using Rewriting Logic
	Reactive rules and CafeOBJ
	Running example.
	Proving termination properties
	Proving confluence properties
	Proving safety properties

	Formal Analysis and Verification Support for Reactive rule-based Agents
	A light-control intelligent system
	From reactive rules to CafeOBJ rewrite rules

	Context-aware Adaptive Systems
	An Algebraic framework for the verification of context-aware adaptive systems
	Proposed framework
	A traffic monitoring system

	On Integrating Algebraic Specifications with Polymorphic Multi-Sorted First-Order Logic via Athena
	Athena -First-Order Logic- proof system
	Athena's tools for OTSs verification

	Proposed framework: Cafe2Athena, from CafeOBJ to Athena Specifications
	Rules of translation
	Semantic correctness of the translation
	Cafe2Athena Tool

	A Mutual Exclusion Protocol Using an Atomic Instruction
	Step 1. Specification in CafeOBJ.
	Step 2. Specification in Athena.
	Step 3. Define the desired goal and falsify it with Athena.
	Step 4. Start the proof of the desired goal using the Proof Scores methodology.
	Step 5. Falsify the discovered lemma with Athena.
	Step 6. Continue the proof with the proof scores approach.
	Step 7. Create an Athena proof based on the gained insights.

	Alternating Bit Protocol (ABP)

