Please use this identifier to cite or link to this item:
http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/13141
Title: | Τρισδιάστατη Ταξινόμηση Δεδομένων Γονιδιακής Έκφρασης Με Τη Χρήση Μεθοδολογιών Μηχανικής Μάθησης: Χρωμοσωμικές Ταξινομήσεις Σε Δύο Στάδια |
Authors: | Σδράκα Μαρία Κουτσούρης Διονύσιος-Δημήτριος |
Keywords: | βιοπληροφορική μηχανική μάθηση ομαδοποίηση συσταδοποίηση μικροσυστοιχίες dna καρκίνος ουροδόχου κύστης γονιδιακή έκφραση χρωμοσώματα k-means δ-trimax τρισδιάστατος πίνακας machine learning clustering bioinformatics bladder cancer gene expression dna microarrays chromosomes three-dimensional array |
Issue Date: | 1-Jul-2016 |
Abstract: | Οι μικροσυστοιχίες DNA αποτελούν μία από τις πιο διαδεδομένες πειραματικές μεθόδους στη γονιδιακή ανάλυση ιστολογικών δειγμάτων. Μέσα από αυτές τις διατάξεις γίνεται εφικτή η επισκόπηση της έκφρασης μεγάλου όγκου γονιδίων από πολλαπλά δείγματα ταυτόχρονα. Το γεγονός αυτό τις καθιστά ιδανικό εργαλείο για την ανάλυση και μελέτη καρκινικών ιστών, με στόχο την εξεύρεση των κανόνων που διέπουν γενικά το μηχανισμό της ογκογένεσης και την περαιτέρω κατανόηση της νόσου.Στην παρούσα εργασία εστιάσαμε τις προσπάθειές μας στην αξιοποίηση της πληροφορίας ότι κάθε γονίδιο σε έναν οργανισμό ανήκει αποκλειστικά σε κάποιο χρωμόσωμά του. Έτσι, δημιουργήσαμε μια νέα τρισδιάστατη δομή, διαχωρίζοντας τα γονίδια ανά χρωμοσωμικό ζεύγος, και στη συνέχεια εφαρμόσαμε διάφορες τεχνικές συσταδοποίησης, προκειμένου να απομονώσουμε τις ομάδες γονιδίων που παρουσιάζουν κοινό προφίλ έκφρασης.Πιο συγκεκριμένα, αναπτύξαμε μια παραλλαγή του δημοφιλή αλγορίθμου k-Means, με την ικανότητα να χειρίζεται και να ομαδοποιεί δισδιάστατους πίνακες, αντί διανυσμάτων. Έπειτα εφαρμόσαμε τον κλασικό k-Means στα κεντροειδή του τρισδιάστατου πίνακα και παρατηρήσαμε υψηλότερης ακρίβειας αποτελέσματα και ταχύτερους χρόνους σύγκλισης. Και στις δύο περιπτώσεις εκτελέσαμε τους αλγορίθμους ξεχωριστά στις τρεις πιθανές τομές του πίνακα: (α) κατά τον άξονα των χρωμοσωμάτων, (β) κατά τον άξονα των γονιδίων και (γ) κατά τον άξονα των δειγμάτων. Τέλος, χρησιμοποιήσαμε μια μέθοδο συσταδοποίησης υποχώρου με το όνομα δ-TRIMAX ώστε να εντοπίσουμε συστάδες και στις τρεις διαστάσεις ταυτόχρονα. Όλα τα παραπάνω υλοποιήθηκαν με χρήση της γλώσσας προγραμματισμού Python και πλήθος βιβλιοθηκών της.Στις τελευταίες ενότητες αξιολογήσαμε τα αποτελέσματα των διαφόρων συσταδοποιήσε-ων που επέστρεψαν οι αλγόριθμοι με τυπικές μεθόδους και διαπιστώσαμε την ποιότητα των συστάδων σε κάθε περίπτωση. |
URI: | http://artemis-new.cslab.ece.ntua.gr:8080/jspui/handle/123456789/13141 |
Appears in Collections: | Διπλωματικές Εργασίες - Theses |
Files in This Item:
File | Size | Format | |
---|---|---|---|
DT2016-0121.pdf | 22.09 MB | Adobe PDF | View/Open |
Items in Artemis are protected by copyright, with all rights reserved, unless otherwise indicated.