Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/13217
Πλήρες αρχείο μεταδεδομένων
Πεδίο DC ΤιμήΓλώσσα
dc.contributor.authorΧαράλαμπος Μιχαηλίδης
dc.contributor.authorΙσιδώρα Χαρά Τουρνή
dc.date.accessioned2018-07-23T08:59:35Z-
dc.date.available2018-07-23T08:59:35Z-
dc.date.issued2016-7-25
dc.date.submitted2016-7-20
dc.identifier.urihttp://artemis-new.cslab.ece.ntua.gr:8080/jspui/handle/123456789/13217-
dc.description.abstractThe complexity of modern industrial processes and the constant innovations in production monitoringtechnologies and data collection, strongly outline the need for advancements in productiondata analysis. Data Mining is a rapidly growing field, aiming in understanding data and extractingpreviously unknown information, with the use of Machine Learning techniques, in order to optimizeproduction.Our cooperation with Johnson & Johnson, enabled us to obtain and explore real case productiondata. The exploitation of them focused on two distinct goals. The first one was the visualization of thedata and the graphical representation of all variables characterizing the mixing process, for an improveddata overview. The second one was the Machine Learning algorithms’ modification and applicationon the properly pre-processed production data, to look into the possibilities of these techniques in theenterprise space.Machine Learning, by definition, sets to represent data as objects in space, utilizing labels anddistances between them. In this direction, data were grouped into objects and vectorized with varioustechniques. Classification and Clustering algorithms were parameterized and implemented, investigatingunique attributes of the provided data. Distance calculation methods for each algorithm wereexamined in depth, and each experiment was assessed through different evaluation metrics, in order toexamine the performance of the algorithms and the result’s accuracy, compared to the initial data. Ourconclusions indicate that Machine Learning can drive important business decisions, through processquantification, and further research can be done in each specific case.
dc.languageGreek
dc.subjectmachine learning
dc.subjectvariable length classification
dc.subjectcategorical time series
dc.subjectmanufacturing process
dc.subjecttransition matrix
dc.titleMachine Learning Techniques In Categorical Time Series Analysis Of Manufacturing Process
dc.typeDiploma Thesis
dc.description.pages122
dc.contributor.supervisorΚοζύρης Νεκτάριος
dc.departmentΤομέας Τεχνολογίας Πληροφορικής & Υπολογιστών
dc.organizationΕΜΠ, Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών
Εμφανίζεται στις συλλογές:Διπλωματικές Εργασίες - Theses

Αρχεία σε αυτό το τεκμήριο:
Αρχείο ΜέγεθοςΜορφότυπος 
DT2016-0200.pdf4.34 MBAdobe PDFΕμφάνιση/Άνοιγμα


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα.