Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/15088
Πλήρες αρχείο μεταδεδομένων
Πεδίο DC ΤιμήΓλώσσα
dc.contributor.authorΧρήστος Βαρυτιμίδης
dc.date.accessioned2018-07-23T15:20:48Z-
dc.date.available2018-07-23T15:20:48Z-
dc.date.issued2008-7-4
dc.date.submitted2008-12-10
dc.identifier.urihttp://artemis-new.cslab.ece.ntua.gr:8080/jspui/handle/123456789/15088-
dc.description.abstractΗ ανίχνευση αντικειμένων σε εικόνες αποτελεί πεδίο της ανάλυσης εικόνων που ερευνάται έντονα τα τελευταία χρόνια. Σε αυτή τη διπλωματική παρουσιάζεται μία ολοκληρωμένη μέθοδος ανίχνευσης αντικειμένων σε εικόνες, η οποία δημιουργήθηκε από τους Viola και Jones το 2001. Για την περιγραφή των εικόνων χρησιμοποιούνται τα χαρακτηριστικά τύπου Haar, ενώ η ταξινόμηση των υποψήφιων περιοχών της εικόνας γίνεται με τον αλγόριθμο AdaBoost χρησιμοποιώντας διαδοχικά συνδεδεμένους ταξινομητές (ΔΣΤ) για αύξηση της ταχύτητας ανίχνευσης. Χρησιμοποιώντας αυτή τη μέθοδο, εκπαιδεύτηκαν διάφοροι ανιχνευτές για το εσωτερικό και το εξωτερικό μέρος αυτοκινήτων, με εικόνες από το σύνολο LabelMe κ.α. Παρουσιάζουμε και εξηγούμε τις επιλογές που έγιναν για την εκπαίδευση κάθε ανιχνευτή. Τα αποτελέσματα της αξιολόγησης κάθε ανιχνευτή παρουσιάζονται με διαγράμματα ακρίβειας-επανάκλησης και χαρακτηριστικής λειτουργίας δέκτη (ROC). Παρουσιάζονται επίσης συμπεράσματα που βοηθούν στην επίτευξη βέλτιστων αποτελεσμάτων με χρήση της συγκεκριμένης μεθόδου. Στα πλαίσια αυτής της διπλωματικής κατασκευάστηκε ένα πρόγραμμα ημιαυτόματου χαρακτηρισμού εικόνων, το οποίο ανιχνεύει αντικείμενα στην υπό χαρακτηρισμό εικόνα χρησιμοποιώντας τη μέθοδο που παρουσιάζουμε.Object detection in images is a filed of image analysis that is searched intensively during thepast few years. In this diploma thesis we present a complete object detection method whichwas created by Viola and Jones in 2001. Haar-like features are used to describe images, whilethe classification of the candidate regions of an image is performed by a cascade of classifierscreated by the AdaBoost algorithm in order to increase detection speed. By using this method,we trained several detectors for interior parts of a car, as well as its exterior, with sample imagesfrom the LabelMe dataset. We show and explain the choices that were made in every detectortraining. The results of the evaluation of every detector are presented in precision-recall andreceiver operator characteristic (ROC) diagrams. We also present some conclusions in order toachieve the best results from this method. In this diploma thesis we created a program forsemi-automatic annotation of images, which detects objects in images using the presentedmethod.
dc.languageGreek
dc.subjectανίχνευση αντικειμένων
dc.subjectχαρακτηριστικά τύπου haar
dc.subjectadaboost
dc.subjectδιαδοχικά συνδεδεμένοι ταξινομητές
dc.subjectταξινόμηση
dc.subjectlabelme
dc.subjectημιαυτόματος χαρακτηρισμός εικόνων
dc.subjectobject detection
dc.subjecthaar-like features
dc.subjectadaboost
dc.subjectcascade of classifiers
dc.subjectclassification
dc.subjectlabelme
dc.subjectsemi-automatic image annotation
dc.titleΑνίχνευση Αντικειμένων Και Ημιαυτόματος Χαρακτηρισμός Εικόνων
dc.typeDiploma Thesis
dc.description.pages91
dc.contributor.supervisorΚόλλιας Στέφανος
dc.departmentΤομέας Τεχνολογίας Πληροφορικής & Υπολογιστών
dc.organizationΕΜΠ, Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών
Εμφανίζεται στις συλλογές:Διπλωματικές Εργασίες - Theses

Αρχεία σε αυτό το τεκμήριο:
Αρχείο ΜέγεθοςΜορφότυπος 
DT2008-0095.pdf2.53 MBAdobe PDFΕμφάνιση/Άνοιγμα


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα.