Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/16189
Πλήρες αρχείο μεταδεδομένων
Πεδίο DC ΤιμήΓλώσσα
dc.contributor.authorΧαντζή Χρυσούλα
dc.date.accessioned2018-07-23T17:25:52Z-
dc.date.available2018-07-23T17:25:52Z-
dc.date.issued2011-11-28
dc.date.submitted2011-12-28
dc.identifier.urihttp://artemis-new.cslab.ece.ntua.gr:8080/jspui/handle/123456789/16189-
dc.description.abstractΟ σκοπός της παρούσας εργασίας είναι η μελέτη και η αξιολόγηση της εφαρμογής διαφόρων μεθόδων κατηγοριοποίησης σε ιατρικά δεδομένα προκειμένου να εξεταστεί κατά πόσο είναι δυνατόν δοθέντος ενός συνόλου δεδομένων να γίνει ασφαλής διάγνωση κάποιας ασθένειας με αυτόματο τρόπο. Για το σκοπό αυτό αντλήθηκαν από την βάση δεδομένων UCI δεδομένα από διάφορες διαγνωστικές ιατρικές εξετάσεις τα οποία φέρουν τον χαρακτηρισμό του ατόμου ως υγιές ή ασθενές, ο οποίος χρησιμοποιήθηκε για την αξιολόγηση των διαφόρων μεθόδων που χρησιμοποιήθηκαν.Συγκεκριμένα, χρησιμοποιήθηκαν οι αλγόριθμοι επιβλεπόμενης αλλά και μη επιβλεπόμενης μάθησης. Στην κατηγορία της επιβλεπόμενης μάθησης χρησιμοποιήθηκαν τα Τεχνητά Νευρωνικά Δίκτυα (ΑΝΝ), η Μηχανή Διανυσμάτων Υποστήριξης (SVM) και ο αλγόριθμος k Κοντινότερων Γειτόνων (kNN) ενώ στην κατηγορία της μη επιβλεπόμενης μάθησης χρησιμοποιήθηκαν οι Χάρτες Αυτο-Οργάνωσης (SOM) και ο Ασαφής c-Μέσος (FCM). Επιπλέον για την βελτίωση της απόδοσης των παραπάνω μεθόδων χρησιμοποιήθηκε και η μέθοδος επιλογής χαρακτηριστικών Σειριακής Εμπρόσθιας Μεταβλητής Επιλογής (SFFS) προκειμένου να αφαιρεθούν πλεονάζοντα χαρακτηριστικά των δεδομένων.Η αξιολόγηση των αποτελεσμάτων έγινε με τη χρήση των στατιστικών μέτρων ακρίβεια (accuracy), ευαισθησία (sensitivity) και προσδιοριστικότητα (specificity) και της χαρακτηριστικής καμπύλης λειτουργίας (ROC).
dc.languageGreek
dc.subjectκατηγοριοποίηση
dc.subjectεπιλογή χαρακτηριστικών
dc.subjectτεχνητά νευρωνικά δίκτυα
dc.subjectμηχανή διανυσμάτων υποστήριξης
dc.subjectk κοντινότεροι γείτονες χάρτες αυτο-οργάνωσης
dc.subjectασαφής c-μέσος
dc.subjectσειριακή εμπρόσθια μεταβλητή επιλογή.
dc.titleΣυγκριτική Μελέτη Μεθόδων Κατηγοριοποίησης Σε Ιατρικά Δεδομένα
dc.typeDiploma Thesis
dc.description.pages128
dc.contributor.supervisorΜατσόπουλος Γιώργος
dc.departmentΤομέας Συστημάτων Μετάδοσης Πληροφορίας & Τεχνολογίας Υλικών
dc.organizationΕΜΠ, Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών
Εμφανίζεται στις συλλογές:Διπλωματικές Εργασίες - Theses

Αρχεία σε αυτό το τεκμήριο:
Αρχείο ΜέγεθοςΜορφότυπος 
DT2011-0293.pdf2.73 MBAdobe PDFΕμφάνιση/Άνοιγμα


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα.