Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/17228
Πλήρες αρχείο μεταδεδομένων
Πεδίο DC ΤιμήΓλώσσα
dc.contributor.authorΓαβαλάς, Νικόλαος-
dc.date.accessioned2019-03-20T07:44:06Z-
dc.date.available2019-03-20T07:44:06Z-
dc.date.issued2019-03-13-
dc.identifier.urihttp://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/17228-
dc.description.abstractAnomaly Detection is a field of Machine Learning used by systems to identify observations that differ from the majority of data and are often linked directly to unexpected behaviour, errors, and other forms of novelties. Common applications of Anomaly Detection include but are not limited to credit card fraud detection, machinery or computer behaviour monitoring, network intrusion detection, real-time analytics, etc. In this thesis we study algorithms and methods for Anomaly Detection that enable identification of outliers both in real-time, in order to prevent unwanted events as soon as possible, and at a big scale, since the volume of data in our era is growing exponentially.en_US
dc.languageenen_US
dc.subjectMachine Learningen_US
dc.subjectAnomaly Detectionen_US
dc.subjectReal-Time Systemsen_US
dc.subjectDistributed Stream Processingen_US
dc.subjectBig Dataen_US
dc.titleReal-time Anomaly Detection at Scaleen_US
dc.description.pages71en_US
dc.contributor.supervisorΚοζύρης Νεκτάριοςen_US
dc.departmentΤομέας Τεχνολογίας Πληροφορικής και Υπολογιστώνen_US
Εμφανίζεται στις συλλογές:Διπλωματικές Εργασίες - Theses

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος 
thesis_gavalas.pdf1.99 MBAdobe PDFΕμφάνιση/Άνοιγμα


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα.