Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/17799
Πλήρες αρχείο μεταδεδομένων
Πεδίο DC ΤιμήΓλώσσα
dc.contributor.authorΜάκαρης, Νικόλαος Δ.-
dc.date.accessioned2020-11-24T21:45:23Z-
dc.date.available2020-11-24T21:45:23Z-
dc.date.issued2020-11-18-
dc.identifier.urihttp://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/17799-
dc.description.abstractΤο θέμα της παρούσας διπλωματικής εργασίας είναι η αναγνώριση είδους μουσικής με ανάλυση μουσικών κομματιών από συμβολικά δεδομένα, δηλαδή δεδομένα που είναι κωδικοποιημένα σε MIDI (Musical Instrument Digital Interface) μορφή, βασισμένη σε αρχιτεκτονικές βαθιάς μηχανικής μάθησης (Deep Learning) . Το θέμα αναγνώρισης είδους μουσικής ( MGR - Music Genre Recognition ) αποτελεί ένα ενεργό πρόβλημα στον τομέα της άντληση πληροφορίας από μουσική ( MIR - Music Information Retrieval) και συνδέεται με πολλές ερευνητικές μελέτες τα τελευταία χρόνια. Θα χρησιμοποιηθεί επιβλεπόμενη μηχανική μάθηση και πιο συγκεκριμένα, συνελικτικά νευρωνικά δίκτυα ( CNN ) για την ταξινόμηση κομματιών σε συγκεκριμένες κατηγορίες. Επιλέχθηκαν διάφορα σύνολα δεδομένων για τα πειράματά μας, όπως τα Million Song Dataset ,Tagtraum , Lastfm , τα οποία είναι ευρέως διαδεδομένα στον συγκεκριμένο τομέα της MIR . Περιλαμβάνεται επίσης μια συζήτηση περί κάποιων θεωρητικών θεμάτων που σχετίζεται με τα είδη της μουσικής, δηλαδή οι μηχανισμοι που χρησιμοποιούν οι άνθρωποι για να κατηγοριοποιήσουν τη μουσική ανά είδος και το εάν μπορούν να δημιουργηθούν αντικειμενικές ταξινομήσεις είδους μουσικής.en_US
dc.languageelen_US
dc.subjectΜηχανική Μάθησηen_US
dc.subjectMachine Learningen_US
dc.subjectΝευρωνικά Δίκτυαen_US
dc.subjectNeural Networksen_US
dc.subjectΑναγνώριση Είδους Μουσικήςen_US
dc.subjectMusic Genre Recognitionen_US
dc.subjectΣυμβολικά Δεδομένα MIDIen_US
dc.subjectSymbolic Data MIDIen_US
dc.subjectΣυνελικτικά Νευρωνικά Δίκτυαen_US
dc.subjectConvolutional Neural Networksen_US
dc.titleΑναγνώριση είδους μουσικής από συμβολικά δεδομένα (MIDI) με τεχνικές μηχανικής μάθησηςen_US
dc.description.pages137en_US
dc.contributor.supervisorΣτάμου Γιώργοςen_US
dc.departmentΤομέας Τεχνολογίας Πληροφορικής και Υπολογιστώνen_US
dc.description.notesΗ ταξινόμηση μουσικής είναι ένας ευρύς και διεπιστημονικός τομέας έρευνας που προσφέρει σημαντικά οφέλη τόσο από ακαδημαϊκή όσο και από εμπορική άποψη. Το αντικείμενο της παρούσας διπλωματικής εργασίας είναι η προσπάθια προσέγγισης του προβλήματος της κατηγοριοποίησης είδους μουσικής ( music genre recognition - MGR ) από συμβολικά δεδομένα ( MIDI ) με τεχνικές μηχανικής μάθησης ( Machine Learning ). Ουσιαστικά, ο πρωταρχικός στόχος αυτής της διπλωματικής εργασίας είναι η παραγωγή ενός αποτελεσματικού και εύχρηστου συστήματος λογισμικού που θα μπορούσε να ταξινομήσε αυτόματα τα μουσικά κομμάτια από συμβολικά δεδομένα ( MIDI δεδομένα) σε είδος μουσικής.Αυτό θα γίνει χρησιμοποιώντας νευρωνικά δίκτυα ( Neural Networks ), αφού έχει επισημανθεί με μια δεδομένη κατηγοροποίηση είδους και εκπαιδεύτεί σε ένα σύνολο δεδομένων. Προτού επιτευχθεί αυτό, φυσικά, υπάρχουν ορισμένες ενδιάμεσες εργασίες που πρέπει να ολοκληρω θούν, η καθεμία με διαφορετικό βαθμό δυσκολίας και της δικής της ερευνητικής αξίας από μόνη της. Η κατηγοριοποίηση σε είδος μουσικής χρησιμοποιείται από μουσικούς συνθέτες, μουσικές βιβλιοθήκες και άτομα γενικά ως πρωταρχικό μέσο οργάνωσης μουσικής. Δεν υπάρχει αμφιβολία ότι το είδος είναι ένα από τα πιο σημαντικά μέσα που είναι διαθέσιμα για την ταξινόμηση και την οργάνωση της μουσικής. Η αυτόματη αναγνώριση είδους μουσικής αποτελεί ένα από τα πιο ενεργά πεδία έρευνας MIR . Ωστόσο, η περισσότερη έρευνα σε αυτό το κομμάτι γίνεται χρησιμοποιώντας ηχητικά δεδομένα ( audio data ), δηλαδή γίνεται προσπάθια κατηγοριοποίηση του είδους μέσω επεξεργασία σήματος είτε με εξαγωγή χαρακτηριστικών ( feature extraction ) και εκμάθηση χαρακτηριστικών ( feature learning ) μέσω νευρωνικών δικτύων. Επίσης γίνεται έρευνα για την ίδια προσπάθεια, αναλύοντας στίχους των κομματιών και εξάγωντας συμπεράσματα από αυτά. Στη παρούσα εργασία, αντιθέτως, θα χρησιμοποιήσουμε συμβολικά δεδομένα, δηλαδή δεδομένα MIDI για την ταξινόμηση σε είδη μουσικής.en_US
Εμφανίζεται στις συλλογές:Διπλωματικές Εργασίες - Theses

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος 
makaris_nikolaos_diploma_thesis.pdfΔιπλωματική Εργασία4.32 MBAdobe PDFΕμφάνιση/Άνοιγμα


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα.