Please use this identifier to cite or link to this item: http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/17823
Title: Ταξινόµηση Μελαγχρωµατικών Βλαβών Με Μεθόδους Μηχανικής Μάθησης
Authors: Λαδάκης, Γεώργιος
Σταφυλοπάτης Ανδρέας-Γεώργιος
Keywords: Artificial Intelligence
Machine Learning
Deep Learning
Classification
Convolutional Neural Networks
VGG
ResNet
EfficientNet
Transfer Learning
Μελάνωµα
Issue Date: 10-Sep-2020
Abstract: Την τελευταία δεκαετία οι εξελίξεις στον κλάδο της Τεχνητής Νοηµοσύνης (Artificial Intelligence) παρουσιάζουν εκθετική αύξηση. Η διεύρυνση του όγκου δεδοµένων σε συνδυασµό µε την σηµαντική ανάπτυξη των υπολογιστικών πόρων δηµιούργησαν γόνιµο έδαφος για την άνθηση της Βαθιάς Μάθησης (Deep Learning) και εν συνεχεία της ΄Ορασης Υπολογιστών (Computer Vision). ΄Ενα πολλά υποσχόµενο παρακλάδι της ΄Ορασης Υπολογιστών αφορά την υποβοηθούµενη διάγνωση (computer-aided diagnosis) µε την χρήση ιατρικών εικόνων. Σε συνέχεια των παραπάνω, αποφασίσαµε να ασχοληθούµε µε την ταξινόµηση µελαγχρωµατικών ϐλαβών ως καλοήθεις ή κακοήθεις µε την χρήση Συνελικτικών Νευρωνικών ∆ικτύων (Convolutional Neural Networks - CNNs). Σκοπός της παρούσας διπλωµατικής εργασίας είναι η µελέτη των δοµικών στοιχείων των CNNs, η ανάλυση των µεθόδων εκπαίδευσης και αξιολόγησης τους, καθώς και η παρουσίαση των σηµαντικότερων CNN αρχιτεκτονικών. Στη συνέχεια, ακολουθεί η υλοποίηση και ϐελτιστοποίηση µοντέλων µε στόχο την επίτευξη της καλύτερης δυνατής απόδοσης για το συγκεκριµένο πρόβληµα. Τα δεδοµένα για την υλοποίηση των εν λόγω µοντέλων λήφθηκαν από τον διαγωνισµό “ISIC Challenge 2016 - Task 3: Lesion Classification”. Με τη χρήση state-of-the-art αρχιτεκτονικών και µεθόδων Βαθιάς Μάθησης καταφέραµε να ξεπεράσουµε τις επιδόσεις των νικητών του διαγωνισµού. Τέλος, καταλήγουµε σε ορισµένα συµπεράσµατα ενώ προτείνουµε κατευθύνσεις για την περαιτέρω ϐελτίωση της επίδοσης των µοντέλων.
URI: http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/17823
Appears in Collections:Διπλωματικές Εργασίες - Theses

Files in This Item:
File Description SizeFormat 
Thesis_Ladakis.pdf15 MBAdobe PDFView/Open


Items in Artemis are protected by copyright, with all rights reserved, unless otherwise indicated.