Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/17823
Πλήρες αρχείο μεταδεδομένων
Πεδίο DC ΤιμήΓλώσσα
dc.contributor.authorΛαδάκης, Γεώργιος-
dc.date.accessioned2020-12-14T21:03:29Z-
dc.date.available2020-12-14T21:03:29Z-
dc.date.issued2020-09-10-
dc.identifier.urihttp://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/17823-
dc.description.abstractΤην τελευταία δεκαετία οι εξελίξεις στον κλάδο της Τεχνητής Νοηµοσύνης (Artificial Intelligence) παρουσιάζουν εκθετική αύξηση. Η διεύρυνση του όγκου δεδοµένων σε συνδυασµό µε την σηµαντική ανάπτυξη των υπολογιστικών πόρων δηµιούργησαν γόνιµο έδαφος για την άνθηση της Βαθιάς Μάθησης (Deep Learning) και εν συνεχεία της ΄Ορασης Υπολογιστών (Computer Vision). ΄Ενα πολλά υποσχόµενο παρακλάδι της ΄Ορασης Υπολογιστών αφορά την υποβοηθούµενη διάγνωση (computer-aided diagnosis) µε την χρήση ιατρικών εικόνων. Σε συνέχεια των παραπάνω, αποφασίσαµε να ασχοληθούµε µε την ταξινόµηση µελαγχρωµατικών ϐλαβών ως καλοήθεις ή κακοήθεις µε την χρήση Συνελικτικών Νευρωνικών ∆ικτύων (Convolutional Neural Networks - CNNs). Σκοπός της παρούσας διπλωµατικής εργασίας είναι η µελέτη των δοµικών στοιχείων των CNNs, η ανάλυση των µεθόδων εκπαίδευσης και αξιολόγησης τους, καθώς και η παρουσίαση των σηµαντικότερων CNN αρχιτεκτονικών. Στη συνέχεια, ακολουθεί η υλοποίηση και ϐελτιστοποίηση µοντέλων µε στόχο την επίτευξη της καλύτερης δυνατής απόδοσης για το συγκεκριµένο πρόβληµα. Τα δεδοµένα για την υλοποίηση των εν λόγω µοντέλων λήφθηκαν από τον διαγωνισµό “ISIC Challenge 2016 - Task 3: Lesion Classification”. Με τη χρήση state-of-the-art αρχιτεκτονικών και µεθόδων Βαθιάς Μάθησης καταφέραµε να ξεπεράσουµε τις επιδόσεις των νικητών του διαγωνισµού. Τέλος, καταλήγουµε σε ορισµένα συµπεράσµατα ενώ προτείνουµε κατευθύνσεις για την περαιτέρω ϐελτίωση της επίδοσης των µοντέλων.en_US
dc.languageelen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectMachine Learningen_US
dc.subjectDeep Learningen_US
dc.subjectClassificationen_US
dc.subjectConvolutional Neural Networksen_US
dc.subjectVGGen_US
dc.subjectResNeten_US
dc.subjectEfficientNeten_US
dc.subjectTransfer Learningen_US
dc.subjectΜελάνωµαen_US
dc.titleΤαξινόµηση Μελαγχρωµατικών Βλαβών Με Μεθόδους Μηχανικής Μάθησηςen_US
dc.description.pages91en_US
dc.contributor.supervisorΣταφυλοπάτης Ανδρέας-Γεώργιοςen_US
dc.departmentΤομέας Τεχνολογίας Πληροφορικής και Υπολογιστώνen_US
Εμφανίζεται στις συλλογές:Διπλωματικές Εργασίες - Theses

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος 
Thesis_Ladakis.pdf15 MBAdobe PDFΕμφάνιση/Άνοιγμα


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα.