Please use this identifier to cite or link to this item: http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/18222
Full metadata record
DC FieldValueLanguage
dc.contributor.authorΜάμαλη, Κατερίνα-
dc.date.accessioned2022-02-11T08:15:37Z-
dc.date.available2022-02-11T08:15:37Z-
dc.date.issued2022-02-04-
dc.identifier.urihttp://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/18222-
dc.description.abstractThis thesis is concerned with the fundamental problem of learning distributions from truncated samples. In this setting the purpose is to estimate a probability distribution based only on truncated samples. That means that samples falling outside a specific, unknown set are not available. The challenge becomes greater when we demand that these estimations are given by an efficient -in terms of sample and traditional complexity- algorithm. We study the learnability of two specific distributions in this setting: the Poisson Binomial Distribution and the Mallows Distribution. We are interested in those conditions on the truncation set that care both sufficient and necessary to learn these distributions. In the first case, we are faced with an impossible problem that becomes easier as the distribution gains structure, thus indicating an interesting transition on the difficulty of the problem. For the Mallows Model we give a sufficient condition and recognise the sub-optimality of a well-established method in the field of rank aggregation.en_US
dc.languageenen_US
dc.subjectLearning Theoryen_US
dc.subjectDistribution Learningen_US
dc.subjectLearning from Truncated Samplesen_US
dc.subjectTruncated Distributionen_US
dc.subjectPoisson Binomial Distributionen_US
dc.subjectMallows Modelen_US
dc.titleDistribution Learning from Truncated Samplesen_US
dc.description.pages106en_US
dc.contributor.supervisorΦωτάκης Δημήτριοςen_US
dc.departmentΤομέας Ηλεκτρομαγνητικών Εφαρμογών Ηλεκτροοπτικής και Ηλεκτρονικών Υλικώνen_US
Appears in Collections:Διπλωματικές Εργασίες - Theses

Files in This Item:
File Description SizeFormat 
Diploma_Thesis.pdfMain article1.38 MBAdobe PDFView/Open


Items in Artemis are protected by copyright, with all rights reserved, unless otherwise indicated.