Please use this identifier to cite or link to this item:
http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/18540
Title: | Πολυτροπική μάθηση για την εκτίμηση της επικινδυνότητας των αθηρωματικών πλακών σε ασθενείς με καρωτιδική νόσο |
Authors: | Καψάλη, Ελένη-Ελπίδα Νικήτα Κωνσταντίνα |
Keywords: | Καρωτιδική νόσος Αθηρωματική πλάκα Σύστημα υποστήριξης αποφάσεων Βαθιά Μάθηση Πολυτροπική Μάθηση εξισορρόπηση δεδομένων επαύξηση δεδομένων ResNet18 ResNet50 AlexNet VGG16 VGG19 |
Issue Date: | 9-Nov-2022 |
Abstract: | Σύμφωνα με τον Παγκόσμιο Οργανισμό Υγείας (2022 Heart Disease Stroke Statistical Update Fact Sheet Global Burden of Disease) τα καρδιαγγειακά νοσήματα αποτελούν τη 1η αιτία θανάτων παγκοσμίως. Η αθηροσκλήρωση αποτελεί καρδιαγγειακή ασθένεια η οποία οφείλεται στην δημιουργία αθηρωματικών πλακών στα τοιχώματα των αρτηριών. Σε περίπτω- ση ρήξης ή/και αποκόλλησης των πλακών δημιουργούνται θρόμβοι οι οποίοι προκαλούν απόφραξη των αγγείων. ΄Εχει εκτιμηθεί ότι έως και 20-25% των ισχαιμικών εγκεφαλικών προκαλούνται από αθηροσκλήρωση κύριας αρτηρίας και η αθηροσκλήρωση της καρωτιδι- κής αρτηρίας πιστεύεται ότι ευθύνεται σε ποσοστό μεταξύ 10% και 20%. Με την εξέλιξη των απεικονιστικών τεχνολογιών σε συνδυασμό με ιστολογικές εξετάσεις έχει διευρυνθεί το πλήθος και το είδος των παραμέτρων που χαρακτηρίζουν μία αθηρωματική πλάκα και την πιθανή συμπεριφορά της. Οι παράμετροι αυτοί μαζί με τις κλινικές παρατηρήσεις και τις άλλες εργαστηριακές εξετάσεις αποτελούν ένα μεγάλο σύνολο δεδομένων που με κατάλληλο συνδυασμό, επεξεργασία και γνώση διαμορφώνουν πολύ αξιόπιστα προγνωστικά εργαλεία. Στόχος της παρούσας εργασίας είναι η δημιουργία πολυτροπικών μοντέλων Βαθιάς Μάθη- σης (Μultimodal Learning) τα οποία θα αξιοποιούν τις εικόνες υπερήχων καρωτίδας και τα κλινικά και εργαστηριακά δεδομένα ασθενών με καρωτιδική νόσο και θα κατατάσσουν τους ασθενείς σε δύο κατηγορίες, Υψηλού και Χαμηλού Κινδύνου. Για το σκοπό αυτό αξιοποι- ήθηκαν ευρέως χρησιμοποιούμενα μοντέλα βαθιάς μάθησης όπως τα ResNet18, AlexNet και VGG16 και αναπτύχθηκαν δύο πολυτροπικά μοντέλα, ένα με τη μέθοδο Feature-Level Fusion και ένα με τη Decision-Level Fusion. Το σύνολο δεδομένων αποτελείται από 64 ασθενείς Υψηλού Κινδύνου και 11 Χαμηλού και 268 εικόνες υπερηχογραφημάτων. Τελι- κά, τα μοντέλα που αναπτύχθηκαν αξιολογήθηκαν ως προς αρκετές μετρικές, συγκρίθηκαν μεταξύ τους και εξάχθηκαν συμπεράσματα ως προς την αποδοτικότητά τους. Η μέθοδος Feature-Level Fusion έδωσε τα καλύτερα αποτελέσματα πετυχαίνοντας Balanced Accuracy 77%, AUC 87%, Precision 76%, F1 Score 75% και Μatthews Correlation Coefficient (MCC) 0.533. Τα αποτελέσματα κρίνονται ικανοποιητικά λόγω του περιορισμένου πλήθους των δεδομένων και η χρήση πολυτροπικών μοντέλων στην καρωτιδική νόσο ϕαίνεται να έχει προ- γνωστικές ικανότητες που μπορούν να βελτιώσουν την αποτίμηση της κλινικής κατάστασης του ασθενούς και να οδηγήσουν σε βέλτιστες θεραπευτικές αποφάσεις. |
URI: | http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/18540 |
Appears in Collections: | Διπλωματικές Εργασίες - Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
DThesis_EEKapsali.pdf | 3.34 MB | Adobe PDF | View/Open |
Items in Artemis are protected by copyright, with all rights reserved, unless otherwise indicated.