Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/18844
Πλήρες αρχείο μεταδεδομένων
Πεδίο DC ΤιμήΓλώσσα
dc.contributor.authorΝτούνης, Πέτρος-
dc.date.accessioned2023-10-24T07:43:17Z-
dc.date.available2023-10-24T07:43:17Z-
dc.date.issued2023-10-18-
dc.identifier.urihttp://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/18844-
dc.description.abstract2019 was the year of the most recent pandemic of COVID-19 which shocked global community. One of the best measures against the spreading of the disease was the use of mask in public spaces. In many of those public spaces monitoring the percentage of people wearing a mask can be implemented as an autonomous system using technologies from branches of Internet of things and Machine learning. Using live-feed from surveillance cameras to determine the percentages of people who wear and people who don’t is an interesting scientific problem due to its inherit difficulty in order to be real-time. The purpose of this thesis is to present an end to end system to solve this exact problem.en_US
dc.languageelen_US
dc.subjectInternet of Thingsen_US
dc.subjectMQTTen_US
dc.subjectKafkaen_US
dc.subjectInfluxDBen_US
dc.subjectMachine learningen_US
dc.subjectObject Trackingen_US
dc.subjectComputer visionen_US
dc.titleSurveillance system for Mask detection using AI techniquesen_US
dc.description.pages105en_US
dc.contributor.supervisorΤσουμάκος Δημήτριοςen_US
dc.departmentΤομέας Τεχνολογίας Πληροφορικής και Υπολογιστώνen_US
Εμφανίζεται στις συλλογές:Διπλωματικές Εργασίες - Theses

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος 
thesis.pdf6.62 MBAdobe PDFΕμφάνιση/Άνοιγμα


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα.