Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/19009
Πλήρες αρχείο μεταδεδομένων
Πεδίο DC ΤιμήΓλώσσα
dc.contributor.authorΞυνογαλάς, Δημήτριος-
dc.date.accessioned2024-03-14T11:12:51Z-
dc.date.available2024-03-14T11:12:51Z-
dc.date.issued2024-02-29-
dc.identifier.urihttp://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/19009-
dc.description.abstractAutomatic sleep stage classification is crucial for assessing sleep quality and diagnosing sleep disorders. While numerous approaches have been developed for this purpose, many rely solely on single-channel electroencephalogram (EEG) signals or consider inputs from a single domain. Polysomnography (PSG) offers a more comprehensive solution by providing multiple channels of signal recording, enabling models to extract and integrate information from diverse channels for enhanced classification performance. Furthermore, valuable insights can be derived from both the time and frequency domain representations of PSG signals. This study introduces MMSleepNet, a deep learning model that adeptly extracts and fuses information from multiple PSG channels across both the time and frequency domains to facilitate automatic sleep stage scoring. Recognizing the potential of sleep labs to generate vast amounts of unlabeled data for sleep scoring and the inherent difficulty of labeling this data, the study explores the efficacy of various self-supervised learning algorithms to address label scarcity and enhance the proposed model's performance.en_US
dc.languageenen_US
dc.subjectMachine Learningen_US
dc.subjectAutomatic Sleep Stagingen_US
dc.subjectMultimodalen_US
dc.subjectΜηχανική Μάθησηen_US
dc.subjectΠολυτροπικήen_US
dc.subjectΑυτόματη Κατηγοριοποίηση Ύπνουen_US
dc.titleMMSleepNet: A Μultimodal Model for Automatic Sleep Stagingen_US
dc.description.pages75en_US
dc.contributor.supervisorΑσκούνης Δημήτριοςen_US
dc.departmentΤομέας Ηλεκτρικών Βιομηχανικών Διατάξεων και Συστημάτων Αποφάσεωνen_US
Εμφανίζεται στις συλλογές:Διπλωματικές Εργασίες - Theses

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος 
diploma_thesis-Xynogalas_Dimitrios-03117437.pdf2.34 MBAdobe PDFΕμφάνιση/Άνοιγμα


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα.