Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/19062
Πλήρες αρχείο μεταδεδομένων
Πεδίο DC ΤιμήΓλώσσα
dc.contributor.authorPavlaki, Paraskevi Evgenia-
dc.date.accessioned2024-04-10T13:51:21Z-
dc.date.available2024-04-10T13:51:21Z-
dc.date.issued2024-03-29-
dc.identifier.urihttp://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/19062-
dc.description.abstractMusic generation aspires to produce musical pieces that have a pleasant harmonic result along with a complex and stimulating context, engaging listeners in emotional, intellectual and aesthetic dimensions. Polyphonic Music Generation can be modeled as multi-dimensional language generation task, thus, the contribution of state-of-the-art models, techniques and approaches in Natural Language Processing can be more than beneficial when applied in musical context. In this thesis, we propose a Seq2Seq generation approach, designed to enhance compositions by integrating additional voices, incorporating either an upper or lower voice to the given melody. To transform symbolic music contained on a MIDI file into sequential format, suitable for transformer models, we employ modern encoding tools. This enables us to integrate advantages such as byte pair encoding, data augmentation, and other techniques commonly used in Natural Language Processing. Despite music evaluation being a subject of disagreement among members of the research community, the field remains active for academic exploration. In our evaluation process, we introduce a novel approach that integrates quantitative assessment with qualitative criteria, aiming to bridge the gap between objective metrics and human perceptionen_US
dc.languageenen_US
dc.subjectΠαραγωγή μουσικήςen_US
dc.subjectΠαραγωγικά Μοντέλαen_US
dc.subjectΜετασχηματιστέςen_US
dc.subjectΜουσικήen_US
dc.subjectΣυμβολική Μουσικήen_US
dc.subjectΜηχανική Mάθησηen_US
dc.subjectMachine Learningen_US
dc.subjectTransformersen_US
dc.subjectGenerative Modelsen_US
dc.subjectMusicen_US
dc.subjectMusic Generationen_US
dc.subjectPolyphonic Musicen_US
dc.titleGenerative Music: Seq2Seq Models for polyphonic enrichmenten_US
dc.description.pages90en_US
dc.contributor.supervisorΣτάμου Γιώργοςen_US
dc.departmentΤομέας Τεχνολογίας Πληροφορικής και Υπολογιστώνen_US
Εμφανίζεται στις συλλογές:Διπλωματικές Εργασίες - Theses

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος 
Diploma_Thesis_Pavlaki_Paraskevi_Evgenia.pdf4.91 MBAdobe PDFΕμφάνιση/Άνοιγμα


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα.