Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/19243
Τίτλος: | Ανίχνευση και Κατηγοριοποίηση Τρόμου σε Ασθενείς με Νόσο του Πάρκινσον μέσω Μεθόδων Μηχανικής Μάθησης |
Συγγραφείς: | Ντόγκας, Κωνσταντίνος Ρουσσάκη Ιωάννα |
Λέξεις κλειδιά: | Πάρκινσον Μηχανική Μάθηση Τεχνητή Νοημοσύνη Πρόβλεψη Καταστάσεων Τρόμου ALAMEDA Tremor Dataset Κινητικά Συμπτώματα Επιταχυνσιόμετρο Έξυπνα Ρολόγια Πολυετικετικά Πολυκατηγορικά Μοντέλα |
Ημερομηνία έκδοσης: | 22-Ιου-2024 |
Περίληψη: | Στην παρούσα μελέτη εφαρμόζουμε τεχνικές μηχανικής και βαθιάς μάθησης στο ALAMEDA Tremor Dataset για να προβλέψουμε τις καταστάσεις τρόμου σε ασθενείς με τη νόσο του Parkinson. Η νόσος του Parkinson είναι μια χρόνια νευροεκφυλιστική διαταραχή με κινητικά και μη κινητικά συμπτώματα. Το dataset περιλαμβάνει δεδομένα από επιταχυνσιόμετρα που είναι ενσωματωμένα σε έξυπνα ρολόγια που φοριούνται στους καρπούς των ασθενών. Χρησιμοποιώντας μεθόδους μηχανικής μάθησης, επιδιώκουμε να προβλέψουμε τις καταστάσεις τρόμου σε τέσσερις κατηγορίες, τόσο μεμονωμένα όσο και συνδυαστικά, για να βελτιώσουμε τη διαχείριση της νόσου και τη δοσολογία της λεβοντόπα. Συγκρίνουμε την απόδοση πέντε διαφορετικών μοντέλων: Λογιστική Παλινδρόμηση, Δέντρα Αποφάσεων, Τυχαία Δάση, Μηχανές Υποστήριξης Διανυσμάτων και Νευρωνικά Δίκτυα. Αυτή η προσέγγιση διευκολύνει τη συνεχή παρακολούθηση της πορείας της νόσου, σε αντίθεση με τις τρέχουσες επισκέψεις ανά δύο έως τρεις μήνες. Επιπλέον, η συλλογή δεδομένων από έξυπνα ρολόγια παρέχει πιο αντικειμενικά δεδομένα, αποφεύγοντας την υποτίμηση ή υπερτίμηση των συμπτωμάτων από τους ασθενείς. |
URI: | http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/19243 |
Εμφανίζεται στις συλλογές: | Διπλωματικές Εργασίες - Theses |
Αρχεία σε αυτό το τεκμήριο:
Αρχείο | Περιγραφή | Μέγεθος | Μορφότυπος | |
---|---|---|---|---|
Thesis_Ntogkas_K.pdf | 5.71 MB | Adobe PDF | Εμφάνιση/Άνοιγμα |
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα.