Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/19265
Τίτλος: Model-assisted optimization of Linear Algebra routines on multi-GPU computing systems
Συγγραφείς: Anastasiadis, Petros
Γκούμας Γεώργιος
Λέξεις κλειδιά: Linear algebra
Graphics processing units (GPUs)
Matrix-matrix multiplication
Modeling
Autotuning
Multi-GPU systems
Software libraries
Communication routing
BLAS routines
Overlap optimization
Ημερομηνία έκδοσης: 9-Σεπ-2024
Περίληψη: Dense linear algebra operations appear frequently in high-performance computing (HPC) applications, rendering their performance crucial to achieving optimal scalability. As many modern HPC clusters contain multi-GPU nodes, BLAS operations are frequently offloaded on GPUs, necessitating optimized libraries to ensure good performance. However, optimizing BLAS for multi-GPU introduces numerous challenges similar to distributed computing, like data decomposition, task scheduling, and communication across GPUs with distinct memory spaces. This complexity of multi-GPU makes BLAS optimization very complex, leading to sub-optimal performance or system-specific solutions with reduced portability. To address these issues, we suggest a model-based autotuning approach: we introduce several performance models for BLAS and integrate them into PARALiA, an end-to-end BLAS library. PARALiA uses model-driven insights to dynamically autotune BLAS execution, tailoring performance-critical parameters for each specific problem and system during runtime. This autotuning is coupled with an optimized task scheduler, leading to near-optimal data distribution and performance-aware resource utilization. PARALiA provides state-of-the-art performance and energy efficiency and incorporates the ability to adapt to heterogeneous systems and scenarios via model-based decisions. Finally, we focus on the GEMM kernel, extending PARALiA with a custom static scheduler that integrates model-driven algorithmic, communication, and autotuning optimizations (PARALiA-GEMMex), which delivers significantly superior performance compared to the state-of-the-art.
URI: http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/19265
Εμφανίζεται στις συλλογές:Διδακτορικές Διατριβές - Ph.D. Theses

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος 
PhD_thesis_updated_final.pdfMain file (thesis)3.28 MBAdobe PDFΕμφάνιση/Άνοιγμα


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα.