Please use this identifier to cite or link to this item: http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/19266
Full metadata record
DC FieldValueLanguage
dc.contributor.authorΚακούρης, Δημήτριος-
dc.date.accessioned2024-09-20T07:12:30Z-
dc.date.available2024-09-20T07:12:30Z-
dc.date.issued2024-09-12-
dc.identifier.urihttp://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/19266-
dc.description.abstractDiffusion models are a novel class of generative models that have shown promising results in various applications, including image synthesis, natural language processing, and audio generation. Diffusion models operate by gradually transforming a sample from a simple distribution (e.g., Gaussian noise) into a complex data distribution through a series of iterative, noise-adding, and noise-removing steps. This diploma thesis extends the application of diffusion models to the domain of style transfer, a technique pivotal to altering the output of the diffusion model and effectively guiding into producing an image that closely resembles our desired art style. It is crucial to handle semantic alignment while also preserving the texture and nuances of the desired art style. This thesis aims to achieve a fine-balance between these two components. It uses state of the art methods from papers like StyleID and InitNO to handle style transfer via attention key injection and semantic alignment via intial latent noise optimization respectively.en_US
dc.languageenen_US
dc.subjectGenerative AIen_US
dc.subjectneural networksen_US
dc.subjectmachine learningen_US
dc.subjecttransformersen_US
dc.subjectμηχανική μάθησηen_US
dc.subjectνευρωνικά δίκτυαen_US
dc.subjectμοντέλα διάχυσηςen_US
dc.subjectDiffusion modelsen_US
dc.titleTraining-free Style Transfer in Diffusion Modelsen_US
dc.description.pages99en_US
dc.contributor.supervisorΒουλόδημος Αθανάσιοςen_US
dc.departmentΤομέας Τεχνολογίας Πληροφορικής και Υπολογιστώνen_US
Appears in Collections:Διπλωματικές Εργασίες - Theses

Files in This Item:
File Description SizeFormat 
DiplomaThesis_03119019.pdf29.94 MBAdobe PDFView/Open


Items in Artemis are protected by copyright, with all rights reserved, unless otherwise indicated.