Please use this identifier to cite or link to this item: http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/19365
Full metadata record
DC FieldValueLanguage
dc.contributor.authorΜιχελάκης, Παναγιώτης-
dc.date.accessioned2024-10-31T11:17:03Z-
dc.date.available2024-10-31T11:17:03Z-
dc.date.issued2024-10-25-
dc.identifier.urihttp://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/19365-
dc.description.abstractThe application of artificial intelligence (AI) in medical imaging has significantly en- hanced diagnostic accuracy and efficiency. This thesis proposes a novel framework for the automated detection and segmentation of brain tumors in MRI scans using diffusion mod- els, the Segment Anything Model (SAM), and the Grounding DINO model. The diffusion model generates counterfactual images of the healthy brain, facilitating the identification of anomalies. SAM and Grounding DINO use point and text prompts to accurately seg- ment the tumors. Our proposed pipeline consistently outperforms the individual baseline models, demonstrating high performance across various evaluation metrics. By providing multiple output images, this system aids radiologists in making more informed decisions. Crucially, this framework is intended to assist, not replace, medical professionals, en- hancing their diagnostic capabilities and supporting improved patient outcomes.en_US
dc.languageenen_US
dc.subjectdiffusion modelen_US
dc.subjectcounterfactualen_US
dc.subjectbrain tumouren_US
dc.subjectsegmentationen_US
dc.subjectSAMen_US
dc.subjectGrounding DINOen_US
dc.titleA Unified Framework for Brain Tumour Localisation in MRI Images Using Diffusion Models and Advanced Segmentation Techniquesen_US
dc.description.pages194en_US
dc.contributor.supervisorΒουλόδημος Αθανάσιοςen_US
dc.departmentΤομέας Τεχνολογίας Πληροφορικής και Υπολογιστώνen_US
Appears in Collections:Διπλωματικές Εργασίες - Theses

Files in This Item:
File Description SizeFormat 
Diploma_Thesis_Michelakis.pdf22.87 MBAdobe PDFView/Open


Items in Artemis are protected by copyright, with all rights reserved, unless otherwise indicated.