Please use this identifier to cite or link to this item: http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/19638
Title: Decision-Making in Stochastic Environments Using Diffusion Models
Authors: Zarifis, Stylianos
Μαραγκός Πέτρος
Keywords: Diffusion Models
Time Series Forecasting
Model Predictive Control
Uncertainty Quantification
Scenario Trees
Machine Learning
Deep Learning
Reinforcement Learning
Energy Markets
Μοντέλα Διάχυσης
Πρόβλεψη Χρονοσειρών
Προβλεπτικός Έλεγχος
Ποσοτικοποίηση Αβεβαιότητας
Δέντρα Σεναρίων
Μηχανική Μάθηση
Βαθιά Μάθηση
Ενισχυτική Μάθηση
Αγορές Ενέργειας
Issue Date: 18-Jun-2025
Abstract: Sequential decision‐making under uncertainty is a difficult task in many real-world applications, and standard optimization methods often fail to capture complex stochastic dynamics, leading to suboptimal control. This thesis investigates the integration of diffusion-based probabilistic forecasting in Model Predictive Control (MPC) to enhance decision-making in partially observable, stochastic systems. In this Thesis, we develop Diffusion‐Informed Model Predictive Control (D-I MPC), a unified framework that integrates powerful diffusion‐based probabilistic forecasting into MPC. Our approach generates an ensemble of future trajectories for the evolution of the system, using a diffusion model and then applies several MPC variants: deterministic MPC, stochastic MPC, multi-stage scenario tree-based MPC, and heuristic-augmented MPC. We demonstrate the effectiveness of D-I MPC on an energy‐arbitrage task with a battery energy storage system in the New York day-ahead electricity market, where it consistently outperforms MPC implementations driven by classical forecasters and model-free reinforcement-learning baselines, and additionally it performs closely to idealized implementations that use perfect forecasts in their optimization processes.
URI: http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/19638
Appears in Collections:Διπλωματικές Εργασίες - Theses

Files in This Item:
File Description SizeFormat 
Stelios_Zarifis_Thesis.pdf39.25 MBAdobe PDFView/Open


Items in Artemis are protected by copyright, with all rights reserved, unless otherwise indicated.