Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/19676
Τίτλος: | Edge-to-Cloud Synergy for Architecture-Driven High-Performance Orchestration for AI Inference |
Συγγραφείς: | Σταθοπούλου, Φωτεινή Σούντρης Δημήτριος |
Λέξεις κλειδιά: | Cloud,Edge, Inference, Scheduling, Performance-aware, Architecture aware |
Ημερομηνία έκδοσης: | 3-Ιου-2025 |
Περίληψη: | The rapid evolution of Artificial Intelligence (AI) and Machine Learning (ML) has significantly heightened computational demands, particularly for inference serving workloads. While traditional cloud-based deployments offer scalability, they face challenges such as network congestion, high energy consumption, and privacy concerns. In contrast, edge computing provides low-latency and sustainable alternatives but is constrained by limited computational resources. In this thesis, we introduce SynergAI, a novel framework designed for performance- and architecture-aware inference serving across heterogeneous edge-to-cloud infrastructures. Built upon a comprehensive performance characterization of modern inference engines, SynergAI integrates a combination of offline and online decision-making policies to deliver intelligent, lightweight, and architecture-aware scheduling. By dynamically allocating workloads across diverse hardware architectures, it effectively minimizes Quality of Service (QoS) violations. We implement SynergAI within a Kubernetes-based ecosystem and evaluate its efficiency. Our results demonstrate that architecture-driven inference serving enables optimized and architecture-aware deployments on emerging hardware platforms, achieving an average reduction of 2.4× in QoS violations compared to a State-of-the-Art (SotA) solution. |
URI: | http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/19676 |
Εμφανίζεται στις συλλογές: | Διπλωματικές Εργασίες - Theses |
Αρχεία σε αυτό το τεκμήριο:
Αρχείο | Περιγραφή | Μέγεθος | Μορφότυπος | |
---|---|---|---|---|
Thesis Stathopoulou Foteini.pdf | 1.85 MB | Adobe PDF | Εμφάνιση/Άνοιγμα |
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα.