Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/19873
Τίτλος: Stage-Specific Image Enhancement for Diabetic Retinopathy Image Classification
Συγγραφείς: Ρουμελιώτης, Ιωάννης
Ματσόπουλος Γιώργος
Λέξεις κλειδιά: Diabetic Retinopathy
Color Fundus Photography
Convolutional Neural Networks
APTOS-2019
ICDR Staging
Image Classification
Ημερομηνία έκδοσης: 30-Οκτ-2025
Περίληψη: Screening for diabetic retinopathy (DR) depends on pipelines that are transparent and reproducible, yet image preprocessing is often under-specified or coupled with model changes, obscuring attribution. This work asks whether stage-aware preprocessing - targeted, interpretable edits aimed at stage-defining cues - can shift five-class DR grading when everything else is held constant. Using APTOS-2019 with fixed patient-level splits, we establish a neutral baseline that standardizes geometry and framing, select a single modern pretrained backbone as the reference, and then freeze the training recipe. We vary only the input preparation through five scenarios (S0–S4) aligned with ICDR stages 0-4, applying each uniformly to all images to keep comparisons fair. Each scenario yields a dataset variant for training a single model under identical settings, followed by evaluation on the unchanged test set with standard multi-class reporting to reveal class-specific shifts and adjacent confusions. Across scenarios, targeted edits produce stage-specific gains without destabilizing overall behavior: stabilization supports a balanced profile, proliferative-focused edits enhance advanced-stage detection, and vessel-emphasis benefits severe NPDR, while dot/bright-centric variants largely track the baseline on this split. The study is bounded by a single public corpus, class imbalance, and image-level labels; consequently, findings should be read as dataset-internal evidence that input design matters. Future work should assess cross-dataset robustness, incorporate lesion-level supervision or saliency checks to verify where edits act, and pair stage-aware inputs with calibration and interpretability suitable for screening deployment.
URI: http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/19873
Εμφανίζεται στις συλλογές:Διπλωματικές Εργασίες - Theses

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος 
Dissertation_Roumeliotis_Ioannis.pdf1.83 MBAdobe PDFΕμφάνιση/Άνοιγμα


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα.