Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/19893| Τίτλος: | Continuous Machine Learning for Cooperative, Connected and Automated Mobility applications |
| Συγγραφείς: | Κυριακόπουλος, Γεώργιος Τσανάκας Παναγιώτης |
| Λέξεις κλειδιά: | Continuous Machine Learning Concept Drift ETA Prediction SUMO MLOps Gradient Boosted Trees Cooperative Connected and Automated Mobility Urban Mobility |
| Ημερομηνία έκδοσης: | 30-Οκτ-2025 |
| Περίληψη: | Urban mobility is inherently non-stationary: shifts in weather, demand, and network conditions alter data distributions and degrade model accuracy over time. This diploma thesis designs, implements, and evaluates a drift-aware platform for continuous machine learning in Cooperative, Connected and Automated Mobility (CCAM). The system combines a modular microservice architecture for model serving, online monitoring, multi-detector drift consensus, and automated retraining with hot-swap deployment. A reproducible SUMO-based dataset for central Athens is constructed under normal and adverse-weather scenarios. Concept drift is induced via friction reduction to emulate rain, preserving network topology while yielding measurable shifts (average speed −13.68%, average trip duration +16.74%). Evaluation centers on Estimated Time of Arrival (ETA) prediction with a LightGBM model enriched by domain-specific features, exercised in a time-lapse experiment with an abrupt drift at the midpoint, due to rain conditions. Under drift, baseline errors increase markedly (MAE 30.36 s → 56.93 s and MAPE 13.20% → 19.02%). After detecting drift, the model is retrained using one hour of post-drift data and hot-swapped, recovering performance, when compared to the baseline model (MAE −11.00 s, −25.42% and MAPE −2.34 pp, −13.85%). The platform’s flexible architecture is further evidenced by the evaluation of Fuel Consumption and Number of Stops models, while its dashboard and user interface provide real-time interpretability. Overall, the results demonstrate a practical, closed-loop approach to detecting, responding to, and mitigating concept drift in realistic urban traffic settings. |
| URI: | http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/19893 |
| Εμφανίζεται στις συλλογές: | Διπλωματικές Εργασίες - Theses |
Αρχεία σε αυτό το τεκμήριο:
| Αρχείο | Περιγραφή | Μέγεθος | Μορφότυπος | |
|---|---|---|---|---|
| main.pdf | 8.03 MB | Adobe PDF | Εμφάνιση/Άνοιγμα |
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα.