Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/19893
Τίτλος: Continuous Machine Learning for Cooperative, Connected and Automated Mobility applications
Συγγραφείς: Κυριακόπουλος, Γεώργιος
Τσανάκας Παναγιώτης
Λέξεις κλειδιά: Continuous Machine Learning
Concept Drift
ETA Prediction
SUMO
MLOps
Gradient Boosted Trees
Cooperative Connected and Automated Mobility
Urban Mobility
Ημερομηνία έκδοσης: 30-Οκτ-2025
Περίληψη: Urban mobility is inherently non-stationary: shifts in weather, demand, and network conditions alter data distributions and degrade model accuracy over time. This diploma thesis designs, implements, and evaluates a drift-aware platform for continuous machine learning in Cooperative, Connected and Automated Mobility (CCAM). The system combines a modular microservice architecture for model serving, online monitoring, multi-detector drift consensus, and automated retraining with hot-swap deployment. A reproducible SUMO-based dataset for central Athens is constructed under normal and adverse-weather scenarios. Concept drift is induced via friction reduction to emulate rain, preserving network topology while yielding measurable shifts (average speed −13.68%, average trip duration +16.74%). Evaluation centers on Estimated Time of Arrival (ETA) prediction with a LightGBM model enriched by domain-specific features, exercised in a time-lapse experiment with an abrupt drift at the midpoint, due to rain conditions. Under drift, baseline errors increase markedly (MAE 30.36 s → 56.93 s and MAPE 13.20% → 19.02%). After detecting drift, the model is retrained using one hour of post-drift data and hot-swapped, recovering performance, when compared to the baseline model (MAE −11.00 s, −25.42% and MAPE −2.34 pp, −13.85%). The platform’s flexible architecture is further evidenced by the evaluation of Fuel Consumption and Number of Stops models, while its dashboard and user interface provide real-time interpretability. Overall, the results demonstrate a practical, closed-loop approach to detecting, responding to, and mitigating concept drift in realistic urban traffic settings.
URI: http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/19893
Εμφανίζεται στις συλλογές:Διπλωματικές Εργασίες - Theses

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος 
main.pdf8.03 MBAdobe PDFΕμφάνιση/Άνοιγμα


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα.