Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/19911
Πλήρες αρχείο μεταδεδομένων
Πεδίο DC ΤιμήΓλώσσα
dc.contributor.authorΚαούκης, Παναγιώτης-
dc.date.accessioned2025-11-07T15:13:11Z-
dc.date.available2025-11-07T15:13:11Z-
dc.date.issued2025-11-04-
dc.identifier.urihttp://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/19911-
dc.description.abstractGenomic analysis relies heavily on transforming raw sequencing data into com- plete and interpretable genomic information. At the heart of this process lies the alignment step, where billions of sequencing reads are mapped to a ref- erence genome to reconstruct the original DNA structure. Despite significant algorithmic progress, the alignment extension phase—particularly the Matrix Fill and Traceback steps—remains a major computational bottleneck due to its high time and resource demands. This thesis explores two complementary approaches to alleviate these chal- lenges: (i) the optimization and hardware acceleration of alignment algorithms, and (ii) the reduction of alignment workload through intelligent filtering. Field- Programmable Gate Arrays (FPGAs) are investigated as a hardware accelera- tion platform due to their fine-grained parallelism and configurability, which en- able efficient implementation of alignment algorithms such as Smith-Waterman, GenASM, and WFA. Furthermore, the SneakySnake pre-filtering algorithm is employed to analyze datasets, identify edit distributions, and guide algorithmic optimizations. By combining dataset-aware pre-filtering with hardware acceleration tech- niques, this work aims to minimize redundant computations, reduce the search space during alignment, and achieve substantial performance gains without compromising accuracy. The proposed system leverages insights from SneakyS- nake to dynamically adapt alignment strategies, demonstrating speedups rel- ative to software-based implementations. Experimental results and architec- tural evaluations validate the effectiveness of the proposed approach and high- light promising directions for future optimization in genomic data processing pipelines.en_US
dc.languageenen_US
dc.subjectAlignmenten_US
dc.subjectGenomicsen_US
dc.subjectHardware Accelerationen_US
dc.subjectPre-Filteringen_US
dc.subjectData-aware system designen_US
dc.titleExploring the Impact of Pre-alignment filtering on HLS-based DNA short read alignment Acceleratorsen_US
dc.description.pages108en_US
dc.contributor.supervisorΣούντρης Δημήτριοςen_US
dc.departmentΤομέας Τεχνολογίας Πληροφορικής και Υπολογιστώνen_US
Εμφανίζεται στις συλλογές:Διπλωματικές Εργασίες - Theses

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος 
Kaoukis_Panagiotis_thesis.pdf5.53 MBAdobe PDFΕμφάνιση/Άνοιγμα


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα.