Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/19911Πλήρες αρχείο μεταδεδομένων
| Πεδίο DC | Τιμή | Γλώσσα |
|---|---|---|
| dc.contributor.author | Καούκης, Παναγιώτης | - |
| dc.date.accessioned | 2025-11-07T15:13:11Z | - |
| dc.date.available | 2025-11-07T15:13:11Z | - |
| dc.date.issued | 2025-11-04 | - |
| dc.identifier.uri | http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/19911 | - |
| dc.description.abstract | Genomic analysis relies heavily on transforming raw sequencing data into com- plete and interpretable genomic information. At the heart of this process lies the alignment step, where billions of sequencing reads are mapped to a ref- erence genome to reconstruct the original DNA structure. Despite significant algorithmic progress, the alignment extension phase—particularly the Matrix Fill and Traceback steps—remains a major computational bottleneck due to its high time and resource demands. This thesis explores two complementary approaches to alleviate these chal- lenges: (i) the optimization and hardware acceleration of alignment algorithms, and (ii) the reduction of alignment workload through intelligent filtering. Field- Programmable Gate Arrays (FPGAs) are investigated as a hardware accelera- tion platform due to their fine-grained parallelism and configurability, which en- able efficient implementation of alignment algorithms such as Smith-Waterman, GenASM, and WFA. Furthermore, the SneakySnake pre-filtering algorithm is employed to analyze datasets, identify edit distributions, and guide algorithmic optimizations. By combining dataset-aware pre-filtering with hardware acceleration tech- niques, this work aims to minimize redundant computations, reduce the search space during alignment, and achieve substantial performance gains without compromising accuracy. The proposed system leverages insights from SneakyS- nake to dynamically adapt alignment strategies, demonstrating speedups rel- ative to software-based implementations. Experimental results and architec- tural evaluations validate the effectiveness of the proposed approach and high- light promising directions for future optimization in genomic data processing pipelines. | en_US |
| dc.language | en | en_US |
| dc.subject | Alignment | en_US |
| dc.subject | Genomics | en_US |
| dc.subject | Hardware Acceleration | en_US |
| dc.subject | Pre-Filtering | en_US |
| dc.subject | Data-aware system design | en_US |
| dc.title | Exploring the Impact of Pre-alignment filtering on HLS-based DNA short read alignment Accelerators | en_US |
| dc.description.pages | 108 | en_US |
| dc.contributor.supervisor | Σούντρης Δημήτριος | en_US |
| dc.department | Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών | en_US |
| Εμφανίζεται στις συλλογές: | Διπλωματικές Εργασίες - Theses | |
Αρχεία σε αυτό το τεκμήριο:
| Αρχείο | Περιγραφή | Μέγεθος | Μορφότυπος | |
|---|---|---|---|---|
| Kaoukis_Panagiotis_thesis.pdf | 5.53 MB | Adobe PDF | Εμφάνιση/Άνοιγμα |
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα.