Please use this identifier to cite or link to this item: http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/19917
Full metadata record
DC FieldValueLanguage
dc.contributor.authorΜαρκογιαννάκης, Άρης-
dc.date.accessioned2025-11-12T07:29:14Z-
dc.date.available2025-11-12T07:29:14Z-
dc.date.issued2025-11-05-
dc.identifier.urihttp://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/19917-
dc.description.abstractSingle-cell RNA sequencing has revolutionized biological research by enabling gene expression measurement at cellular resolution, revealing diverse cell types, states, and disease contexts. Recent single-cell foundation models can learn generalizable representations directly from expression data, improving downstream classification and clustering tasks. However, such models typically rely on fixed label spaces that limit their ability to express cellular diversity. This thesis presents Cell2Text, a multimodal generative framework that transforms single-cell transcriptomic profiles into structured natural language descriptions. By integrating pretrained single-cell encoders with large language models through learnable projection modules, Cell2Text generates coherent summaries describing cellular identity, tissue of origin, disease relevance, and biological pathway activity. Experimental results show that Cell2Text achieves higher accuracy than baseline models, maintains strong ontological consistency through PageRank-based similarity metrics, and produces semantically faithful text outputs. Overall, the proposed approach highlights the potential of combining biological and linguistic representations for scalable and informative single-cell characterization.en_US
dc.languageenen_US
dc.subjectDeep Learningen_US
dc.subjectMultimodal Learningen_US
dc.subjectNatural Language Generationen_US
dc.subjectLarge Language Modelsen_US
dc.subjectFoundation Modelsen_US
dc.subjectSingle-cell RNA-seqen_US
dc.titleCell2Text: Multimodal LLM for Generating Textual Descriptions from Single-Cell RNA-Seq Profilesen_US
dc.description.pages109en_US
dc.contributor.supervisorΣτάμου Γιώργοςen_US
dc.departmentΤομέας Τεχνολογίας Πληροφορικής και Υπολογιστώνen_US
Appears in Collections:Διπλωματικές Εργασίες - Theses

Files in This Item:
File Description SizeFormat 
thesis_ArisMarkogiannakis.pdf3.74 MBAdobe PDFView/Open


Items in Artemis are protected by copyright, with all rights reserved, unless otherwise indicated.