Please use this identifier to cite or link to this item: http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/19958
Full metadata record
DC FieldValueLanguage
dc.contributor.authorΠΑΠΑΔΑΚΟΣ, ΑΛΕΞΑΝΔΡΟΣ-
dc.date.accessioned2025-12-23T12:59:20Z-
dc.date.available2025-12-23T12:59:20Z-
dc.date.issued2025-12-19-
dc.identifier.urihttp://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/19958-
dc.description.abstractIn the modern digital era, the exponential growth of data generated at the network edge driven by thousands of Internet of Things (IoT) devices, has unlocked unprecedented opportunities for Artificial Intelligence (AI) and Machine Learning (ML). However the utilization of this decentralized data is increasingly constrained by strict privacy regulations (e.g., GDPR, HIPAA) and bandwidth limitations, rendering traditional centralized training approaches often prohibitive. Federated Learning (FL) has emerged as a transformative solution to these challenges that enables collaborative model training while preserving data privacy.en_US
dc.languageenen_US
dc.subjectFederated Learning, Cloud-Native, Kubernetes, FLOps, Flower framework, Ephemeral Jobs, Privacy Preservation, MLOps, MLflow.en_US
dc.titleΕφαρµογές Συνεχούς και Οµοσπονδιακής Συνεργατικής Μάθησηςen_US
dc.description.pages110en_US
dc.contributor.supervisorΤσανάκας Παναγιώτηςen_US
dc.departmentΤομέας Τεχνολογίας Πληροφορικής και Υπολογιστώνen_US
Appears in Collections:Διπλωματικές Εργασίες - Theses

Files in This Item:
File Description SizeFormat 
Federated_learning_thesis (5).pdf3.23 MBAdobe PDFView/Open


Items in Artemis are protected by copyright, with all rights reserved, unless otherwise indicated.